A concavity property for the measure of product sets in groups
Ruzsa, Imre
Fundamenta Mathematicae, Tome 141 (1992), p. 247-254 / Harvested from The Polish Digital Mathematics Library

Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf μ̅(AB): μ(A) = x is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman’s inequality μ̲(AB)min(μ̲(A)+μ̲(B),μ(G)) for unimodular G.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211944
@article{bwmeta1.element.bwnjournal-article-fmv140i3p247bwm,
     author = {Imre Ruzsa},
     title = {A concavity property for the measure of product sets in groups},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {247-254},
     zbl = {0763.43001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p247bwm}
}
Ruzsa, Imre. A concavity property for the measure of product sets in groups. Fundamenta Mathematicae, Tome 141 (1992) pp. 247-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p247bwm/

[00000] Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer, New York 1963. | Zbl 0115.10603

[00001] Kemperman, On products of sets in a locally compact group, Fund. Math. 56 (1964), 51-68. | Zbl 0125.28901

[00002] Kneser, Summenmengen in lokalkompakten abelschen Gruppen, Math. Z. 66 (1956), 88-110.

[00003] Macbeath, On measure of sum sets II. The sum-theorem for the torus, Proc. Cambridge Philos. Soc. 49 (1953), 40-43. | Zbl 0052.26301

[00004] Plünnecke, Eigenschaften und Abschätzungen von Wirkungsfunktionen, Ges. Mathematik und Datenverarbeitung, Bonn 1969.

[00005] Raikov, On the addition of point sets in the sense of Schnirelmann, Mat. Sb. 5 (47) (1939), 425-440 (in Russian). | Zbl 0022.21003

[00006] Shields, Sur la mesure d'une somme vectorielle, Fund. Math. 42 (1955), 57-60. | Zbl 0065.01702