Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf μ̅(AB): μ(A) = x is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman’s inequality for unimodular G.
@article{bwmeta1.element.bwnjournal-article-fmv140i3p247bwm, author = {Imre Ruzsa}, title = {A concavity property for the measure of product sets in groups}, journal = {Fundamenta Mathematicae}, volume = {141}, year = {1992}, pages = {247-254}, zbl = {0763.43001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p247bwm} }
Ruzsa, Imre. A concavity property for the measure of product sets in groups. Fundamenta Mathematicae, Tome 141 (1992) pp. 247-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p247bwm/
[00000] Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer, New York 1963. | Zbl 0115.10603
[00001] Kemperman, On products of sets in a locally compact group, Fund. Math. 56 (1964), 51-68. | Zbl 0125.28901
[00002] Kneser, Summenmengen in lokalkompakten abelschen Gruppen, Math. Z. 66 (1956), 88-110.
[00003] Macbeath, On measure of sum sets II. The sum-theorem for the torus, Proc. Cambridge Philos. Soc. 49 (1953), 40-43. | Zbl 0052.26301
[00004] Plünnecke, Eigenschaften und Abschätzungen von Wirkungsfunktionen, Ges. Mathematik und Datenverarbeitung, Bonn 1969.
[00005] Raikov, On the addition of point sets in the sense of Schnirelmann, Mat. Sb. 5 (47) (1939), 425-440 (in Russian). | Zbl 0022.21003
[00006] Shields, Sur la mesure d'une somme vectorielle, Fund. Math. 42 (1955), 57-60. | Zbl 0065.01702