On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem
Wong, Peter
Fundamenta Mathematicae, Tome 141 (1992), p. 191-196 / Harvested from The Polish Digital Mathematics Library

Let f,g:M1M2 be maps where M1 and M2 are connected triangulable oriented n-manifolds so that the set of coincidences Cf,g=xM1|f(x)=g(x) is compact in M1. We define a Nielsen equivalence relation on Cf,g and assign the coincidence index to each Nielsen coincidence class. In this note, we show that, for n ≥ 3, if M2=M˜2/K where M˜2 is a connected simply connected topological group and K is a discrete subgroup then all the Nielsen coincidence classes of f and g have the same coincidence index. In particular, when M1 and M2 are compact, f and g are deformable to be coincidence free if the Lefschetz coincidence number L(f,g) vanishes.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211938
@article{bwmeta1.element.bwnjournal-article-fmv140i2p191bwm,
     author = {Peter Wong},
     title = {On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {191-196},
     zbl = {0809.55001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p191bwm}
}
Wong, Peter. On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem. Fundamenta Mathematicae, Tome 141 (1992) pp. 191-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p191bwm/

[00000] [1] R. Brooks, Certain subgroups of the fundamental group and the number of roots of f(x)=a, Amer. J. Math. 95 (1973), 720-728. | Zbl 0319.55015

[00001] [2] R. Brooks and R. Brown, A lower bound for the Δ-Nielsen number, Trans. Amer. Math. Soc. 143 (1969), 555-564. | Zbl 0196.26603

[00002] [3] R. Brooks and P. Wong, On changing fixed points and coincidences to roots, Proc. Amer. Math. Soc., to appear. | Zbl 0779.55001

[00003] [4] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott & Foresman, Glenview, Ill., 1971. | Zbl 0216.19601

[00004] [5] A. Dold, Lectures on Algebraic Topology, Springer, Berlin 1972.

[00005] [6] E. Fadell and S. Husseini, Local fixed point index theory for non simply connected manifolds, Illinois J. Math. 25 (1981), 673-699. | Zbl 0469.55004

[00006] [7] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. | Zbl 0715.55002

[00007] [8] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., 1982.

[00008] [9] T. Kiang, The Theory of Fixed Point Classes, Springer, Berlin 1989. | Zbl 0676.55001

[00009] [10] C. McCord, Lefschetz and Nielsen coincidence numbers on nilmanifolds and solvmanifolds, Topology Appl., to appear. | Zbl 0748.55001

[00010] [11] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39.

[00011] [12] J. Vick, Homology Theory, Academic Press, New York 1973.