Let be maps where and are connected triangulable oriented n-manifolds so that the set of coincidences is compact in . We define a Nielsen equivalence relation on and assign the coincidence index to each Nielsen coincidence class. In this note, we show that, for n ≥ 3, if where is a connected simply connected topological group and K is a discrete subgroup then all the Nielsen coincidence classes of f and g have the same coincidence index. In particular, when and are compact, f and g are deformable to be coincidence free if the Lefschetz coincidence number L(f,g) vanishes.
@article{bwmeta1.element.bwnjournal-article-fmv140i2p191bwm, author = {Peter Wong}, title = {On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem}, journal = {Fundamenta Mathematicae}, volume = {141}, year = {1992}, pages = {191-196}, zbl = {0809.55001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p191bwm} }
Wong, Peter. On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem. Fundamenta Mathematicae, Tome 141 (1992) pp. 191-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p191bwm/
[00000] [1] R. Brooks, Certain subgroups of the fundamental group and the number of roots of f(x)=a, Amer. J. Math. 95 (1973), 720-728. | Zbl 0319.55015
[00001] [2] R. Brooks and R. Brown, A lower bound for the Δ-Nielsen number, Trans. Amer. Math. Soc. 143 (1969), 555-564. | Zbl 0196.26603
[00002] [3] R. Brooks and P. Wong, On changing fixed points and coincidences to roots, Proc. Amer. Math. Soc., to appear. | Zbl 0779.55001
[00003] [4] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott & Foresman, Glenview, Ill., 1971. | Zbl 0216.19601
[00004] [5] A. Dold, Lectures on Algebraic Topology, Springer, Berlin 1972.
[00005] [6] E. Fadell and S. Husseini, Local fixed point index theory for non simply connected manifolds, Illinois J. Math. 25 (1981), 673-699. | Zbl 0469.55004
[00006] [7] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. | Zbl 0715.55002
[00007] [8] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., 1982.
[00008] [9] T. Kiang, The Theory of Fixed Point Classes, Springer, Berlin 1989. | Zbl 0676.55001
[00009] [10] C. McCord, Lefschetz and Nielsen coincidence numbers on nilmanifolds and solvmanifolds, Topology Appl., to appear. | Zbl 0748.55001
[00010] [11] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39.
[00011] [12] J. Vick, Homology Theory, Academic Press, New York 1973.