Global approximations for the γ-order Lognormal distribution
Thomas L. Toulias
Discussiones Mathematicae Probability and Statistics, Tome 33 (2013), p. 99-110 / Harvested from The Polish Digital Mathematics Library

A generalized form of the usual Lognormal distribution, denoted with γ, is introduced through the γ-order Normal distribution γ, with its p.d.f. defined into (0,+∞). The study of the c.d.f. of γ is focused on a heuristic method that provides global approximations with two anchor points, at zero and at infinity. Also evaluations are provided while certain bounds are obtained.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:271047
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1154,
     author = {Thomas L. Toulias},
     title = {Global approximations for the $\gamma$-order Lognormal distribution},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {33},
     year = {2013},
     pages = {99-110},
     zbl = {1315.60024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1154}
}
Thomas L. Toulias. Global approximations for the γ-order Lognormal distribution. Discussiones Mathematicae Probability and Statistics, Tome 33 (2013) pp. 99-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1154/

[000] [1] H. Alzer, On some inequalities for the incomplete gamma function, Mathematics of Computation 66 (1997) 771-778. doi: 10.1090/S0025-5718-97-00814-4. | Zbl 0865.33002

[001] [2] F. Bernardeau and L. Kofman, Properties of the cosmological density distribution function, Monthly Notices of the Royal Astrophys. J. 443 (1995) 479-498.

[002] [3] P. Blasi, S. Burles and A.V. Olinto, Cosmological magnetic field limits in an inhomogeneous Universe, The Astrophysical Journal Letters 514 (1999) L79-L82. doi: 10.1086/311958.

[003] [4] E.L. Crow and K. Shimizu, Lognormal Distributions - Theory and Applications (M. Dekker, New York & Basel, 1998).

[004] [5] J. Gathen and J. Gerhard, Modern Computer Algebra (Cambridge University Press, 1993). | Zbl 1277.68002

[005] [6] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, 2007). | Zbl 1208.65001

[006] [7] C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179.

[007] [8] C.P. Kitsos and T.L. Toulias, New information measures for the generalized normal distribution, Information 1 (2010) 13-27. doi: 10.3390/info1010013.

[008] [9] C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (2012) 49-73. | Zbl 1252.60020

[009] [10] T.J. Kozubowski and K. Podgórski, Asymmetric Laplace laws and modeling financial data, Math. Comput. Modelling 34 (2001) 1003-1021. doi: 10.1016/S0895-7177(01)00114-5. | Zbl 1002.60012

[010] [11] T.J. Kozubowski and K. Podgórski, Asymmetric Laplace distributions, Math. Sci. 25 (2000) 37-46. | Zbl 0961.60026

[011] [12] C.G. Small, Expansions and Asymptotics for Statistics (Chapman & Hall, 2010). doi: 10.1201/9781420011029.

[012] [13] T.L. Toulias and C.P. Kitsos, On the generalized Lognormal distribution, J. Prob. and Stat. (2013) 1-16. doi: 10.1155/2013/432642. | Zbl 1273.62035