Application of the Rasch model in categorical pedigree analysis using MCEM: I binary data
G. Qian ; R. M. Huggins ; D. Z. Loesch
Discussiones Mathematicae Probability and Statistics, Tome 24 (2004), p. 255-280 / Harvested from The Polish Digital Mathematics Library

An extension of the Rasch model with correlated latent variables is proposed to model correlated binary data within families. The latent variables have the classical correlation structure of Fisher (1918) and the model parameters thus have genetic interpretations. The proposed model is fitted to data using a hybrid of the Metropolis-Hastings algorithm and the MCEM modification of the EM-algorithm and is illustrated using genotype-phenotype data on a psychological subtest in families where some members are affected by the genetic disorder fragile X. In addition, hypothesis testing and model selection methods based on the Wald statistic are discussed.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:287610
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1056,
     author = {G. Qian and R. M. Huggins and D. Z. Loesch},
     title = {Application of the Rasch model in categorical pedigree analysis using MCEM: I binary data},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {24},
     year = {2004},
     pages = {255-280},
     zbl = {1165.62352},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1056}
}
G. Qian; R. M. Huggins; D. Z. Loesch. Application of the Rasch model in categorical pedigree analysis using MCEM: I binary data. Discussiones Mathematicae Probability and Statistics, Tome 24 (2004) pp. 255-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1056/

[000] [1] J.H. Albert and S. Chib, Bayesian analysis of binary and polychotomous response data, Journal of the American Statistical Association, 88 (1993), 669-679. | Zbl 0774.62031

[001] [2] J. Albert and M. Ghosh, Item respose modelling, Generalized Linear Models A Bayesian Perspective Ed. Dey, D.K. Ghosh, S.K. Mallick, B.K. Marcel Dekker, New York (2000), 173-193.

[002] [3] G.E. Bonney, Regressive logistic models for familial disease and other binary traits, Biometrics 42 (1986), 611-625. | Zbl 0625.62097

[003] [4] K.S. Chan and J. Ledholter, Monte Carlo EM estimation for time series models involving counts, J. Amer. Stat. Assoc. 90 (1995), 242-252. | Zbl 0819.62069

[004] [5] S. Chib, Bayesian methods for correlated binary data, Generalized Linear Models, A Bayesian Perspective, Ed. Dey, D.K., Ghosh, S.K., Mallick, B.K. Marcel Dekker, New York (2000), 113-131. | Zbl 1022.62029

[005] [6] S. Chib and E. Greenberg, Understanding the Metropolis-Hastings algorithm, American Statistician 49 (1995), 327-335.

[006] [7] A.P. Dempster, N. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Royal Stat. Soc. B 39 (1977), 1-38. | Zbl 0364.62022

[007] [8] G.H. Fischer and I.W. Molenaar, Rasch Models, Foundations, Recent Developments, and Applications, Springer-Verlag, New York 1995. | Zbl 0815.00010

[008] [9] R.A. Fisher, The correlation between relatives on the supposition of Mendelian inheritance, Trans. of the Royal Society of Edinburgh 52 (1918), 399-433.

[009] [10] P.E.B. FitzGerald and M.W. Knuiman, Interpretation of regressive logistic regression coefficients in analyses of familial data, Biometrics 54 (1998), 909-920. | Zbl 1058.62605

[010] [11] A. Gelman and D.B. Rubin, Inference from iterative simulation using multiple sequences, Statistical Science 7 (1992), 457-472.

[011] [12] S.W. Guo and E.A. Thompson, Monte Carlo estimation of mixed models for large complex pedigrees, Biometrics 50 (1994), 417-432. | Zbl 0821.62075

[012] [13] J.L. Hopper, Variance components for statistical genetics: applications in medical research to characteristics related to human diseases and health, Statistical Methods in Medical Research 2 (1993), 199-223.

[013] [14] J.L. Hopper and J.D. Mathews, Extensions to multivariate normal models for pedigree analysis, Ann. Hum. Genet. 46 (1982), 373-383. | Zbl 0493.62091

[014] [15] R.M. Huggins, On robust analysis of pedigree data, Aust J. Stat. 35 (1993), 43-57. | Zbl 0772.62062

[015] [16] K.L. Lange, J. Westlake and M.A. Spence, Extensions to pedigree analysis, III, Variance components by the scoring method, Ann. Hum. Genet. 39 (1976), 485-491. | Zbl 0331.92006

[016] [17] D.Z. Loesch, Q.M. Bui, J. Grigsby, E. Butler, J. Epstein, RM. Huggins and AK. Taylor, Effect of the fragile X status categories and the FMRP levels on executive functioning in fragile X males and females, Neuropsychology (2002) (in press).

[017] [18] T.A. Louis, Finding observed information using the EM algorithm, J. Royal Stat. Soc. B 44 (1982), 226-233. | Zbl 0488.62018

[018] [19] X.L. Meng and D.B. Rubin, Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm, J. Amer. Stat. Assoc. 86 (1991), 899-909.

[019] [20] G. Rasch, Probabilistic Models for some Intelligence and Attainment Tests, University of Chicago Press, Chicago 1980.

[020] [21] D. Sinha, M.A. Tanner and W.J. Hall, Maximization of the marginal likelihood of grouped survival data, Biometrika 81 (1994), 53-60. | Zbl 0800.62709

[021] [22] S. Sommer and R.M. Huggins, Variable selection using the Wald test and a robust Cp, Applied Statistics 45 (1996), 15-29. | Zbl 1076.62512

[022] [23] M.A. Tanner, Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Ed., Springer, New York 1996. | Zbl 0846.62001

[023] [24] G.C.G. Wei and M.A. Tanner, A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm, J. Amer. Stat. Assoc. 85 (1990), 699-704.