On the existence of a cycle of length at least 7 in a (1,≤ 2)-twin-free graph
David Auger ; Irène Charon ; Olivier Hudry ; Antoine Lobstein
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 591-609 / Harvested from The Polish Digital Mathematics Library

We consider a simple, undirected graph G. The ball of a subset Y of vertices in G is the set of vertices in G at distance at most one from a vertex in Y. Assuming that the balls of all subsets of at most two vertices in G are distinct, we prove that G admits a cycle with length at least 7.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270978
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1516,
     author = {David Auger and Ir\`ene Charon and Olivier Hudry and Antoine Lobstein},
     title = {On the existence of a cycle of length at least 7 in a (1,$\leq$ 2)-twin-free graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {591-609},
     zbl = {1217.05116},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1516}
}
David Auger; Irène Charon; Olivier Hudry; Antoine Lobstein. On the existence of a cycle of length at least 7 in a (1,≤ 2)-twin-free graph. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 591-609. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1516/

[000] [1] D. Auger, Induced paths in twin-free graphs, Electron. J. Combinatorics 15 (2008) N17. | Zbl 1160.05316

[001] [2] C. Berge, Graphes (Gauthier-Villars, 1983).

[002] [3] C. Berge, Graphs (North-Holland, 1985).

[003] [4] I. Charon, I. Honkala, O. Hudry and A. Lobstein, Structural properties of twin-free graphs, Electron. J. Combinatorics 14 (2007) R16. | Zbl 1113.05085

[004] [5] I. Charon, O. Hudry and A. Lobstein, On the structure of identifiable graphs: results, conjectures, and open problems, in: Proceedings 29th Australasian Conference in Combinatorial Mathematics and Combinatorial Computing (Taupo, New Zealand, 2004) 37-38.

[005] [6] R. Diestel, Graph Theory (Springer, 3rd edition, 2005).

[006] [7] S. Gravier and J. Moncel, Construction of codes identifying sets of vertices, Electron. J. Combinatorics 12 (2005) R13. | Zbl 1060.05091

[007] [8] I. Honkala, T. Laihonen and S. Ranto, On codes identifying sets of vertices in Hamming spaces, Designs, Codes and Cryptography 24 (2001) 193-204, doi: 10.1023/A:1011256721935. | Zbl 1008.94028

[008] [9] T. Laihonen, On cages admitting identifying codes, European J. Combinatorics 29 (2008) 737-741, doi: 10.1016/j.ejc.2007.02.016. | Zbl 1143.05036

[009] [10] T. Laihonen and J. Moncel, On graphs admitting codes identifying sets of vertices, Australasian J. Combinatorics 41 (2008) 81-91. | Zbl 1201.05072

[010] [11] T. Laihonen and S. Ranto, Codes identifying sets of vertices, in: Lecture Notes in Computer Science, No. 2227 (Springer-Verlag, 2001) 82-91. | Zbl 1057.94035

[011] [12] A. Lobstein, Bibliography on identifying, locating-dominating and discriminating codes in graphs, http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf.

[012] [13] J. Moncel, Codes identifiants dans les graphes, Thèse de Doctorat, Université de Grenoble, France, 165 pages, June 2005.