Fractional global domination in graphs
Subramanian Arumugam ; Kalimuthu Karuppasamy ; Ismail Sahul Hamid
Discussiones Mathematicae Graph Theory, Tome 30 (2010), p. 33-44 / Harvested from The Polish Digital Mathematics Library

Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, g(N[v])=uN[v]g(u)1 and g(N(v)¯)=uN(v)g(u)1. A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number γfg(G) is defined as follows: γfg(G) = min|g|:g is an MGDF of G where |g|=vVg(v). In this paper we initiate a study of this parameter.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:270977
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1474,
     author = {Subramanian Arumugam and Kalimuthu Karuppasamy and Ismail Sahul Hamid},
     title = {Fractional global domination in graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {30},
     year = {2010},
     pages = {33-44},
     zbl = {1214.05100},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1474}
}
Subramanian Arumugam; Kalimuthu Karuppasamy; Ismail Sahul Hamid. Fractional global domination in graphs. Discussiones Mathematicae Graph Theory, Tome 30 (2010) pp. 33-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1474/

[000] [1] S. Arumugam and R. Kala, A note on global domination in graphs, Ars Combin. 93 (2009) 175-180. | Zbl 1224.05357

[001] [2] S. Arumugam and K. Rejikumar, Basic minimal dominating functions, Utilitas Mathematica 77 (2008) 235-247. | Zbl 1160.05046

[002] [3] G. Chartrand and L. Lesniak, Graphs & Digraphs (Fourth Edition, Chapman & Hall/CRC, 2005).

[003] [4] E.J. Cockayne, G. MacGillivray and C.M. Mynhardt, Convexity of minimal dominating funcitons of trees-II, Discrete Math. 125 (1994) 137-146, doi: 10.1016/0012-365X(94)90154-6. | Zbl 0793.05117

[004] [5] E.J. Cockayne, C.M. Mynhardt and B. Yu, Universal minimal total dominating functions in graphs, Networks 24 (1994) 83-90, doi: 10.1002/net.3230240205. | Zbl 0804.90122

[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998). | Zbl 0890.05002

[006] [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., 1998). | Zbl 0883.00011

[007] [8] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987). | Zbl 0643.68093

[008] [9] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 (1989) 377-385. | Zbl 0729.05045

[009] [10] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approch to the Theory of Graphs (John Wiley & Sons, New York, 1997). | Zbl 0891.05003