The list linear arboricity of planar graphs
Xinhui An ; Baoyindureng Wu
Discussiones Mathematicae Graph Theory, Tome 29 (2009), p. 499-510 / Harvested from The Polish Digital Mathematics Library

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having Δ ≥ 13, or for any planar graph with Δ ≥ 7 and without i-cycles for some i ∈ {3,4,5}. We also prove that ⌈½Δ(G)⌉ ≤ lla(G) ≤ ⌈½(Δ(G)+1)⌉ for any planar graph having Δ ≥ 9.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:271000
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1460,
     author = {Xinhui An and Baoyindureng Wu},
     title = {The list linear arboricity of planar graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {29},
     year = {2009},
     pages = {499-510},
     zbl = {1193.05063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1460}
}
Xinhui An; Baoyindureng Wu. The list linear arboricity of planar graphs. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 499-510. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1460/

[000] [1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III: Cyclic and acyclic invariants, Math. Slovaca 30 (1980) 405-417. | Zbl 0458.05050

[001] [2] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks 11 (1981) 69-72, doi: 10.1002/net.3230110108. | Zbl 0479.05027

[002] [3] X. An and B. Wu, List linear arboricity of series-parallel graphs, submitted. | Zbl 1193.05063

[003] [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, Macmillan, London, 1976). | Zbl 1226.05083

[004] [5] O.V. Borodin, On the total colouring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180. | Zbl 0653.05029

[005] [6] H. Enomoto and B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984) 309-324, doi: 10.1002/jgt.3190080211. | Zbl 0581.05017

[006] [7] F. Guldan, The linear arboricity of 10 regular graphs, Math. Slovaca 36 (1986) 225-228. | Zbl 0612.05050

[007] [8] F. Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci. 175 (1970) 198-205, doi: 10.1111/j.1749-6632.1970.tb56470.x. | Zbl 0226.05119

[008] [9] J.L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999) 129-134, doi: 10.1002/(SICI)1097-0118(199906)31:2<129::AID-JGT5>3.0.CO;2-A | Zbl 0933.05056

[009] [10] J.L. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16 (2000) 367-372, doi: 10.1007/s373-000-8299-9. | Zbl 0963.05073

[010] [11] J.L. Wu, J.F. Hou and G.Z. Liu, The linear arboricity of planar graphs with no short cycles, Theoretical Computer Science 381 (2007) 230-233, doi: 10.1016/j.tcs.2007.05.003. | Zbl 1206.05035

[011] [12] J.L. Wu and Y.W. Wu, The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory 58 (2008) 210-220, doi: 10.1002/jgt.20305. | Zbl 1158.05023