On infinite uniquely partitionable graphs and graph properties of finite character
Jozef Bucko ; Peter Mihók
Discussiones Mathematicae Graph Theory, Tome 29 (2009), p. 241-251 / Harvested from The Polish Digital Mathematics Library

A graph property is any nonempty isomorphism-closed class of simple (finite or infinite) graphs. A graph property is of finite character if a graph G has a property if and only if every finite induced subgraph of G has a property . Let ₁,₂,...,ₙ be graph properties of finite character, a graph G is said to be (uniquely) (₁, ₂, ...,ₙ)-partitionable if there is an (exactly one) partition V₁, V₂, ..., Vₙ of V(G) such that G[Vi]i for i = 1,2,...,n. Let us denote by ℜ = ₁ ∘ ₂ ∘ ... ∘ ₙ the class of all (₁,₂,...,ₙ)-partitionable graphs. A property ℜ = ₁ ∘ ₂ ∘ ... ∘ ₙ, n ≥ 2 is said to be reducible. We prove that any reducible additive graph property ℜ of finite character has a uniquely (₁, ₂, ...,ₙ)-partitionable countable generating graph. We also prove that for a reducible additive hereditary graph property ℜ of finite character there exists a weakly universal countable graph if and only if each property i has a weakly universal graph.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:270677
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1444,
     author = {Jozef Bucko and Peter Mih\'ok},
     title = {On infinite uniquely partitionable graphs and graph properties of finite character},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {29},
     year = {2009},
     pages = {241-251},
     zbl = {1194.05037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1444}
}
Jozef Bucko; Peter Mihók. On infinite uniquely partitionable graphs and graph properties of finite character. Discussiones Mathematicae Graph Theory, Tome 29 (2009) pp. 241-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1444/

[000] [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary graph properties, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[001] [2] I. Broere and J. Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79-87. | Zbl 0951.05034

[002] [3] I. Broere, J. Bucko and P. Mihók, Criteria for the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties, Discuss. Math. Graph Theory 22 (2002) 31-37, doi: 10.7151/dmgt.1156. | Zbl 1013.05066

[003] [4] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043. | Zbl 0906.05057

[004] [5] G. Cherlin, S. Shelah and N. Shi, Universal graphs with forbidden subgraphs and algebraic closure, Advances in Appl. Math. 22 (1999) 454-491, doi: 10.1006/aama.1998.0641. | Zbl 0928.03049

[005] [6] R. Cowen, S.H. Hechler and P. Mihók, Graph coloring compactness theorems equivalent to BPI, Scientia Math. Japonicae 56 (2002) 171-180. | Zbl 1023.05048

[006] [7] A. Farrugia, P. Mihók, R.B. Richter and G. Semanišin, Factorizations and characterizations of induced-hereditary and compositive properties, J. Graph Theory 49 (2005) 11-27, doi: 10.1002/jgt.20062. | Zbl 1067.05057

[007] [8] B. Ganter and R. Wille, Formal Concept Analysis - Mathematical Foundation (Springer-Verlag Berlin Heidelberg, 1999), doi: 10.1007/978-3-642-59830-2. | Zbl 0909.06001

[008] [9] R.L. Graham, M. Grotschel and L. Lovasz, Handbook of Combinatorics (Elsevier Science B.V., Amsterdam, 1995). | Zbl 0833.05001

[009] [10] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colourable graphs, J. Combin. Theory 6 (1969) 264-270, doi: 10.1016/S0021-9800(69)80086-4. | Zbl 0175.50205

[010] [11] W. Imrich, P. Mihók and G. Semanišin, A note on the unique factorization theorem for properties of infinite graphs, Stud. Univ. Zilina, Math. Ser. 16 (2003) 51-54. | Zbl 1056.05062

[011] [12] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58. | Zbl 0623.05043

[012] [13] P. Mihók, Unique factorization theorem, Discuss. Math. Graph Theory 20 (2000) 143-154, doi: 10.7151/dmgt.1114. | Zbl 0968.05032

[013] [14] P. Mihók, On the lattice of additive hereditary properties of object systems, Tatra Mt. Math. Publ. 30 (2005) 155-161. | Zbl 1150.05394

[014] [15] P. Mihók and G. Semanišin, Unique Factorization Theorem and Formal Concept Analysis, CLA 2006, Yasmin, Hammamet, Tunisia, (2006), 195-203. | Zbl 1133.05306

[015] [16] N.W. Sauer, Canonical vertex partitions, Combinatorics, Probability and Computing 12 (2003) 671-704, doi: 10.1017/S0963548303005765. | Zbl 1062.03046

[016] [17] E.R. Scheinerman, On the structure of hereditary classes of graphs, J. Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414. | Zbl 0609.05057