On acyclic colorings of direct products
Simon Špacapan ; Aleksandra Tepeh Horvat
Discussiones Mathematicae Graph Theory, Tome 28 (2008), p. 323-333 / Harvested from The Polish Digital Mathematics Library

A coloring of a graph G is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees T₁ and T₂ equals min{Δ(T₁) + 1, Δ(T₂) + 1}. We also prove that the acyclic chromatic number of direct product of two complete graphs Kₘ and Kₙ is mn-m-2, where m ≥ n ≥ 4. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:270706
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1408,
     author = {Simon \v Spacapan and Aleksandra Tepeh Horvat},
     title = {On acyclic colorings of direct products},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {28},
     year = {2008},
     pages = {323-333},
     zbl = {1156.05018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1408}
}
Simon Špacapan; Aleksandra Tepeh Horvat. On acyclic colorings of direct products. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 323-333. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1408/

[000] [1] N. Alon, C. McDiarmid and B. Reed, Acyclic colouring of graphs, Random Structures and Algorithms 2 (1991) 277-288, doi: 10.1002/rsa.3240020303. | Zbl 0735.05036

[001] [2] N. Alon, B. Mohar and D. P. Sanders, On acyclic colorings of graphs on surfaces, Israel J. Math. 94 (1996) 273-283, doi: 10.1007/BF02762708. | Zbl 0857.05033

[002] [3] O.V. Borodin, On decomposition of graphs into degenerate subgraphs, Diskretny Analys, Novosibirsk 28 (1976) 3-12 (in Russian). | Zbl 0425.05058

[003] [4] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3. | Zbl 0406.05031

[004] [5] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-412, doi: 10.1007/BF02764716. | Zbl 0265.05103

[005] [6] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487-495, doi: 10.1002/jgt.3190090409. | Zbl 0664.05019

[006] [7] M. El-Zahar and N. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121-126, doi: 10.1007/BF02579374. | Zbl 0575.05028

[007] [8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley & Sons, New York, 2000).

[008] [9] R.E. Jamison and G.L. Matthews, Acyclic colorings of products of cycles, manuscript 2005. | Zbl 1181.05044

[009] [10] R.E. Jamison, G.L. Matthews and J. Villalpando, Acyclic colorings of products of trees, Inform. Process. Lett. 99 (2006) 7-12, doi: 10.1016/j.ipl.2005.11.023. | Zbl 1184.05043

[010] [11] B. Mohar, Acyclic colorings of locally planar graphs, European J. Combin. 26 (2005) 491-503, doi: 10.1016/j.ejc.2003.12.016. | Zbl 1058.05024

[011] [12] C. Tardif, The fractional chromatic number of the categorical product of graphs, Combinatorica 25 (2005) 625-632, doi: 10.1007/s00493-005-0038-y. | Zbl 1101.05035

[012] [13] X. Zhu, A survey on Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998) 1-24. | Zbl 0906.05024