A coloring of a graph G is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees T₁ and T₂ equals min{Δ(T₁) + 1, Δ(T₂) + 1}. We also prove that the acyclic chromatic number of direct product of two complete graphs Kₘ and Kₙ is mn-m-2, where m ≥ n ≥ 4. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1408, author = {Simon \v Spacapan and Aleksandra Tepeh Horvat}, title = {On acyclic colorings of direct products}, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {323-333}, zbl = {1156.05018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1408} }
Simon Špacapan; Aleksandra Tepeh Horvat. On acyclic colorings of direct products. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 323-333. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1408/
[000] [1] N. Alon, C. McDiarmid and B. Reed, Acyclic colouring of graphs, Random Structures and Algorithms 2 (1991) 277-288, doi: 10.1002/rsa.3240020303. | Zbl 0735.05036
[001] [2] N. Alon, B. Mohar and D. P. Sanders, On acyclic colorings of graphs on surfaces, Israel J. Math. 94 (1996) 273-283, doi: 10.1007/BF02762708. | Zbl 0857.05033
[002] [3] O.V. Borodin, On decomposition of graphs into degenerate subgraphs, Diskretny Analys, Novosibirsk 28 (1976) 3-12 (in Russian). | Zbl 0425.05058
[003] [4] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3. | Zbl 0406.05031
[004] [5] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-412, doi: 10.1007/BF02764716. | Zbl 0265.05103
[005] [6] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487-495, doi: 10.1002/jgt.3190090409. | Zbl 0664.05019
[006] [7] M. El-Zahar and N. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121-126, doi: 10.1007/BF02579374. | Zbl 0575.05028
[007] [8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley & Sons, New York, 2000).
[008] [9] R.E. Jamison and G.L. Matthews, Acyclic colorings of products of cycles, manuscript 2005. | Zbl 1181.05044
[009] [10] R.E. Jamison, G.L. Matthews and J. Villalpando, Acyclic colorings of products of trees, Inform. Process. Lett. 99 (2006) 7-12, doi: 10.1016/j.ipl.2005.11.023. | Zbl 1184.05043
[010] [11] B. Mohar, Acyclic colorings of locally planar graphs, European J. Combin. 26 (2005) 491-503, doi: 10.1016/j.ejc.2003.12.016. | Zbl 1058.05024
[011] [12] C. Tardif, The fractional chromatic number of the categorical product of graphs, Combinatorica 25 (2005) 625-632, doi: 10.1007/s00493-005-0038-y. | Zbl 1101.05035
[012] [13] X. Zhu, A survey on Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998) 1-24. | Zbl 0906.05024