A new upper bound for the chromatic number of a graph
Ingo Schiermeyer
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 137-142 / Harvested from The Polish Digital Mathematics Library

Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced Kω+3-C.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270707
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1350,
     author = {Ingo Schiermeyer},
     title = {A new upper bound for the chromatic number of a graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {137-142},
     zbl = {1137.05035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1350}
}
Ingo Schiermeyer. A new upper bound for the chromatic number of a graph. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 137-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1350/

[000] [1] B. Baetz and D.R. Wood, Brooks' Vertex Colouring Theorem in Linear Time, TR CS-AAG-2001-05, Basser Dep. Comput. Sci., Univ. Sydney, (2001) 4 pages.

[001] [2] C. Berge, Les problèms de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960) 123-160. | Zbl 0103.16201

[002] [3] C. Berge, Perfect graphs, in: Six papers on graph theory, Indian Statistical Institute, Calcutta (1963), 1-21.

[003] [4] R.C. Brigham and R.D. Dutton, A Compilation of Relations between Graph Invariants, Networks 15 (1985) 73-107, doi: 10.1002/net.3230150108. | Zbl 0579.05059

[004] [5] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. | Zbl 0027.26403

[005] [6] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, Progress on perfect graphs, Math. Program. (B) 97 (2003) 405-422. | Zbl 1028.05035

[006] [7] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. (2) 164 (2006) 51-229, doi: 10.4007/annals.2006.164.51. | Zbl 1112.05042

[007] [8] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vusković, Recognizing Berge Graphs, Combinatorica 25 (2005) 143-186, doi: 10.1007/s00493-005-0012-8. | Zbl 1089.05027

[008] [9] P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38, doi: 10.4153/CJM-1959-003-9.

[009] [10] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004). | Zbl 1036.05001

[010] [11] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271, doi: 10.1016/0095-8956(75)90089-1. | Zbl 0322.05142

[011] [12] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658. | Zbl 0070.18503

[012] [13] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a survey, Graphs and Combinatorics 20 (2004) 1-40, doi: 10.1007/s00373-003-0540-1.