Light classes of generalized stars in polyhedral maps on surfaces
Stanislav Jendrol' ; Heinz-Jürgen Voss
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 85-107 / Harvested from The Polish Digital Mathematics Library

A generalized s-star, s ≥ 1, is a tree with a root Z of degree s; all other vertices have degree ≤ 2. Si denotes a generalized 3-star, all three maximal paths starting in Z have exactly i+1 vertices (including Z). Let be a surface of Euler characteristic χ() ≤ 0, and m():= ⎣(5 + √49-24χ( ))/2⎦. We prove: (1) Let k ≥ 1, d ≥ m() be integers. Each polyhedral map G on with a k-path (on k vertices) contains a k-path of maximum degree ≤ d in G or a generalized s-star T, s ≤ m(), on d + 2- m() vertices with root Z, where Z has degree ≤ k·m() and the maximum degree of T∖Z is ≤ d in G. Similar results are obtained for the plane and for large polyhedral maps on .. (2) Let k and i be integers with k ≥ 3, 1 ≤ i ≤ [k/2]. If a polyhedral map G on with a large enough number of vertices contains a k-path then G contains a k-path or a 3-star Si of maximum degree ≤ 4(k+i) in G. This bound is tight. Similar results hold for plane graphs.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270443
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1216,
     author = {Stanislav Jendrol' and Heinz-J\"urgen Voss},
     title = {Light classes of generalized stars in polyhedral maps on surfaces},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {85-107},
     zbl = {1059.05039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1216}
}
Stanislav Jendrol'; Heinz-Jürgen Voss. Light classes of generalized stars in polyhedral maps on surfaces. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 85-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1216/

[000] [1] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics 13 (1997) 245-250. | Zbl 0891.05025

[001] [2] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83-90, doi: 10.1016/S0012-365X(98)00095-8. | Zbl 0956.05059

[002] [3] B. Grünbaum, New views on some old questions of combinatorial geometry (Int. Theorie Combinatorie, Rome, 1973) 1 (1976) 451-468.

[003] [4] B. Grünbaum and G.C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weight of edges, Ann. Discrete Math. 12 (1982) 129-140. | Zbl 0504.05026

[004] [5] J. Harant, S. Jendrol' and M. Tkáč, On 3-connected plane graphs without trianglar faces, J. Combin. Theory (B) 77 (1999) 150-61, doi: 10.1006/jctb.1999.1918. | Zbl 1027.05030

[005] [6] J. Ivanco, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116. | Zbl 0773.05066

[006] [7] S. Jendrol', T. Madaras, R. Soták and Zs. Tuza, On light cycles in plane triangulations, Discrete Math. 197/198 (1999) 453-467. | Zbl 0936.05065

[007] [8] S. Jendrol' and H.-J. Voss, A local property of polyhedral maps on compact 2-dimensional manifolds, Discrete Math. 212 (2000) 111-120, doi: 10.1016/S0012-365X(99)00329-5. | Zbl 0946.05029

[008] [9] S. Jendrol' and H.-J. Voss, A local property of large polyhedral maps on compact 2-dimensional manifolds, Graphs and Combinatorics 15 (1999) 303-313, doi: 10.1007/s003730050064. | Zbl 0933.05044

[009] [10] S. Jendrol' and H.-J. Voss, Light paths with an odd number of vertices in large polyhedral maps, Annals of Combin. 2 (1998) 313-324, doi: 10.1007/BF01608528. | Zbl 0929.05049

[010] [11] S. Jendrol' and H.-J. Voss, Subgraphs with restricted degrees of their vertices in large polyhedral maps on compact 2-manifolds, European J. Combin. 20 (1999) 821-832, doi: 10.1006/eujc.1999.0341. | Zbl 0942.05018

[011] [12] S. Jendrol' and H.-J Voss, Light subgraphs of multigraphs on compact 2-dimensional manifolds, Discrete Math. 233 (2001) 329-351, doi: 10.1016/S0012-365X(00)00250-8. | Zbl 0995.05038

[012] [13] S. Jendrol' and H.-J. Voss, Subgraphs with restricted degrees of their vertices in polyhedral maps on compact 2-manifolds, Annals of Combin. 5 (2001) 211-226, doi: 10.1007/PL00001301. | Zbl 0990.05035

[013] [14] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in 2-dimensional manifolds of Euler characteristic ≤ 0 - a survey, in: Paul Erdős and his Mathematics, II (Budapest, 1999) Bolyai Soc. Math. Stud., 11 (János Bolyai Math. Soc., Budapest, 2002) 375-411. | Zbl 1037.05015

[014] [15] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Cas. SAV (Math. Slovaca) 5 (1955) 111-113.

[015] [16] T. Madaras, Note on weights of paths in polyhedral graphs, Discrete Math. 203 (1999) 267-269, doi: 10.1016/S0012-365X(99)00052-7. | Zbl 0934.05079

[016] [17] B. Mohar, Face-width of embedded graphs, Math. Slovaca 47 (1997) 35-63. | Zbl 0958.05034

[017] [18] G. Ringel, Map color Theorem (Springer-Verlag Berlin, 1974).

[018] [19] N. Robertson and R. P. Vitray, Representativity of surface embeddings, in: B. Korte, L. Lovász, H.J. Prömel and A. Schrijver, eds., Paths, Flows and VLSI-Layout (Springer-Verlag, Berlin-New York, 1990) 293-328. | Zbl 0735.05032

[019] [20] H. Sachs, Einführung in die Theorie der endlichen Graphen, Teil II. (Teubner Leipzig, 1972). | Zbl 0239.05105

[020] [21] J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296, doi: 10.1007/BF02804013. | Zbl 0524.05031