Extremal problems for forbidden pairs that imply hamiltonicity
Ralph Faudree ; András Gyárfás
Discussiones Mathematicae Graph Theory, Tome 19 (1999), p. 13-29 / Harvested from The Polish Digital Mathematics Library

Let C denote the claw K1,3, N the net (a graph obtained from a K₃ by attaching a disjoint edge to each vertex of the K₃), W the wounded (a graph obtained from a K₃ by attaching an edge to one vertex and a disjoint path P₃ to a second vertex), and Zi the graph consisting of a K₃ with a path of length i attached to one vertex. For k a fixed positive integer and n a sufficiently large integer, the minimal number of edges and the smallest clique in a k-connected graph G of order n that is CY-free (does not contain an induced copy of C or of Y) will be determined for Y a connected subgraph of either P₆, N, W, or Z₃. It should be noted that the pairs of graphs CY are precisely those forbidden pairs that imply that any 2-connected graph of order at least 10 is hamiltonian. These extremal numbers give one measure of the relative strengths of the forbidden subgraph conditions that imply a graph is hamiltonian.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:270578
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1082,
     author = {Ralph Faudree and Andr\'as Gy\'arf\'as},
     title = {Extremal problems for forbidden pairs that imply hamiltonicity},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {19},
     year = {1999},
     pages = {13-29},
     zbl = {0927.05039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1082}
}
Ralph Faudree; András Gyárfás. Extremal problems for forbidden pairs that imply hamiltonicity. Discussiones Mathematicae Graph Theory, Tome 19 (1999) pp. 13-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1082/

[000] [1] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity, Ph.D Thesis, Memphis State University, 1991.

[001] [2] J.A. Bondy and U.S.R. Murty, Graph Theory With Applications (Macmillan, London and Elsevier, New York, 1976).

[002] [3] G. Chartrand and L. Lesniak, Graphs and Digraphs (2nd ed., Wadsworth and Brooks/Cole, Belmont, 1986). | Zbl 0666.05001

[003] [4] G. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.

[004] [5] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, On Cycle Complete Graph Ramsey Numbers, J. Graph Theory 2 (1978) 53-64, doi: 10.1002/jgt.3190020107. | Zbl 0383.05027

[005] [6] R.J. Faudree, Forbidden Subgraphs and Hamiltonian Properties - A Survey, Congressus Numerantium 116 (1996) 33-52. | Zbl 0895.05037

[006] [7] R.J. Faudree, E. Flandrin and Z. Ryjácek, Claw-free Graphs - A Survey, Discrete Math. 164 (1997) 87-147, doi: 10.1016/S0012-365X(96)00045-3. | Zbl 0879.05043

[007] [8] R.J. Faudree and R.J. Gould, Characterizing Forbidden Pairs for Hamiltonian Properties, Discrete Math. 173 (1977) 45-60, doi: 10.1016/S0012-365X(96)00147-1. | Zbl 0879.05050

[008] [9] J.K. Kim, The Ramsey number R(3,t) has order of magnitude t²/logt, Random Structures Algorithms 7 (1995) 173-207, doi: 10.1002/rsa.3240070302. | Zbl 0832.05084

[009] [10] O. Ore, Note on Hamiltonian Circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.