An inequality chain of domination parameters for trees
E.J. Cockayne ; O. Favaron ; J. Puech ; C.M. Mynhardt
Discussiones Mathematicae Graph Theory, Tome 18 (1998), p. 127-142 / Harvested from The Polish Digital Mathematics Library

We prove that the smallest cardinality of a maximal packing in any tree is at most the cardinality of an R-annihilated set. As a corollary to this result we point out that a set of parameters of trees involving packing, perfect neighbourhood, R-annihilated, irredundant and dominating sets is totally ordered. The class of trees for which all these parameters are equal is described and we give an example of a tree in which most of them are distinct.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270420
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1069,
     author = {E.J. Cockayne and O. Favaron and J. Puech and C.M. Mynhardt},
     title = {An inequality chain of domination parameters for trees},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {18},
     year = {1998},
     pages = {127-142},
     zbl = {0914.05058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1069}
}
E.J. Cockayne; O. Favaron; J. Puech; C.M. Mynhardt. An inequality chain of domination parameters for trees. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 127-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1069/

[000] [1] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterisation of (γ,i)-trees, (preprint). | Zbl 0949.05059

[001] [2] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, Packing, perfect neighbourhood, irredundant and R-annihilated sets in graphs, Austr. J. Combin. Math. (to appear). | Zbl 0916.05042

[002] [3] E.J. Cockayne, P.J. Grobler, S.T. Hedetniemi and A.A. McRae, What makes an irredundant set maximal?, J. Combin. Math. Combin. Comput. (to appear). | Zbl 0907.05032

[003] [4] E.J. Cockayne, J.H. Hattingh, S.M. Hedetniemi, S.T. Hedetniemi and A.A. McRae, Using maximality and minimality conditions to construct inequality chains, Discrete Math. 176 (1997) 43-61, doi: 10.1016/S0012-365X(96)00356-1. | Zbl 0887.05031

[004] [5] E.J. Cockayne, S.M. Hedetniemi, S.T. Hedetniemi and C.M. Mynhardt, Irredundant and perfect neighbourhood sets in trees, Discrete Math. (to appear). | Zbl 0955.05027

[005] [6] E.J. Cockayne and C.M. Mynhardt, On a conjecture concerning irredundant and perfect neighbourhood sets in graphs, J. Combin. Math. Combin. Comput. (to appear). | Zbl 0949.05060

[006] [7] O. Favaron and J. Puech, Irredundant and perfect neighbourhood sets in graphs and claw-free graphs, Discrete Math. (to appear). | Zbl 0957.05081

[007] [8] G.H. Fricke, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and M.A. Henning, Perfect neighborhoods in graphs, (preprint).

[008] [9] B.L. Hartnell, On maximal radius two independent sets, Congr. Numer. 48 (1985) 179-182.

[009] [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs (Marcel Dekker, 1997). | Zbl 0890.05002

[010] [11] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233. | Zbl 0315.05102

[011] [12] J. Puech, Irredundant and independent perfect neighborhood sets in graphs, (preprint). | Zbl 0961.05053

[012] [13] J. Topp and L. Volkmann, On packing and covering numbers of graphs, Discrete Math. 96 (1991) 229-238, doi: 10.1016/0012-365X(91)90316-T. | Zbl 0759.05077