Equivalent classes for K₃-gluings of wheels
Halina Bielak
Discussiones Mathematicae Graph Theory, Tome 18 (1998), p. 73-84 / Harvested from The Polish Digital Mathematics Library

In this paper, the chromaticity of K₃-gluings of two wheels is studied. For each even integer n ≥ 6 and each odd integer 3 ≤ q ≤ [n/2] all K₃-gluings of wheels Wq+2 and Wn-q+2 create an χ-equivalent class.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270318
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1064,
     author = {Halina Bielak},
     title = {Equivalent classes for K3-gluings of wheels},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {18},
     year = {1998},
     pages = {73-84},
     zbl = {0914.05025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1064}
}
Halina Bielak. Equivalent classes for K₃-gluings of wheels. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 73-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1064/

[000] [1] C.Y. Chao and E.G.Whitehead, Jr., On chromatic equivalence of graphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131, doi: 10.1007/BFb0070369.

[001] [2] C.Y. Chao and E.G. Whitehead, Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177, doi: 10.1016/0012-365X(79)90107-9. | Zbl 0411.05035

[002] [3] F. Harary, Graph Theory (Reading, 1969).

[003] [4] K.M. Koh and B.H. Goh, Two classes of chromatically unique graphs, Discrete Math. 82 (1990) 13-24, doi: 10.1016/0012-365X(90)90041-F. | Zbl 0697.05027

[004] [5] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285, doi: 10.1007/BF01787578. | Zbl 0727.05023

[005] [6] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69, doi: 10.1016/0012-365X(91)90471-D. | Zbl 0752.05029

[006] [7] B. Loerinc, Chromatic uniqueness of the generalized θ-graph, Discrete Math. 23 (1978) 313-316, doi: 10.1016/0012-365X(78)90012-2. | Zbl 0389.05034

[007] [8] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0. | Zbl 0173.26203

[008] [9] S-J. Xu and N-Z. Li, The chromaticity of wheels, Discrete Math. 51 (1984)207-212, doi: 10.1016/0012-365X(84)90072-4. | Zbl 0547.05032