The leafage of a chordal graph
In-Jen Lin ; Terry A. McKee ; Douglas B. West
Discussiones Mathematicae Graph Theory, Tome 18 (1998), p. 23-48 / Harvested from The Polish Digital Mathematics Library

The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - 1/2 lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270535
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1061,
     author = {In-Jen Lin and Terry A. McKee and Douglas B. West},
     title = {The leafage of a chordal graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {18},
     year = {1998},
     pages = {23-48},
     zbl = {0912.05053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1061}
}
In-Jen Lin; Terry A. McKee; Douglas B. West. The leafage of a chordal graph. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 23-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1061/

[000] [1] H. Broersma, T. Kloks, D. Kratsch and H. Müller, Independent sets in asteroidal triple-free graphs, in: Proceedings of ICALP'97, P. Degano, R. Gorrieri, A. Marchetti-Spaccamela, (eds.), (Springer-Verlag, 1997), Lect. Notes Comp. Sci. 1256, 760-770. | Zbl 0918.68072

[001] [2] H. Broersma, T. Kloks, D. Kratsch and H. Müller, A generalization of AT-free graphs and a generic algorithm for solving triangulation problems, Memorandum No. 1385, University of Twente, Enschede, The Netherlands, 1997. | Zbl 1009.68099

[002] [3] P.A. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974) 205-212, doi: 10.1016/0012-365X(74)90002-8.

[003] [4] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51 (1950) 161-166, doi: 10.2307/1969503. | Zbl 0038.02003

[004] [5] R.P. Dilworth, Some combinatorial problems on partially ordered sets, in: Combinatorial Analysis (Bellman and Hall, eds.) Proc. Symp. Appl. Math. (Amer. Math. Soc 1960), 85-90. | Zbl 0096.00601

[005] [6] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776. | Zbl 0098.14703

[006] [7] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pac. J. Math. 15 (1965) 835-855. | Zbl 0132.21001

[007] [8] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory (B) 16 (1974) 47-56, doi: 10.1016/0095-8956(74)90094-X. | Zbl 0266.05101

[008] [9] F. Gavril, Generating the maximum spanning trees of a weighted graph, J. Algorithms 8 (1987) 592-597, doi: 10.1016/0196-6774(87)90053-8. | Zbl 0636.68091

[009] [10] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16 (1964) 539-548, doi: 10.4153/CJM-1964-055-5. | Zbl 0121.26003

[010] [11] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).

[011] [12] T. Kloks, D. Kratsch and H. Müller, Asteroidal sets in graphs, in: Proceedings of WG'97, R. Möhring, (ed.), (Springer-Verlag, 1997) Lect. Notes Comp. Sci. 1335, 229-241. | Zbl 0897.05076

[012] [13] T. Kloks, D. Kratsch and H. Müller, On the structure of graphs with bounded asteroidal number, Forschungsergebnisse Math/Inf/97/22, FSU Jena, Germany, 1997. | Zbl 0989.05059

[013] [14] B. Leclerc, Arbres et dimension des ordres, Discrete Math. 14 (1976) 69-76, doi: 10.1016/0012-365X(76)90007-8. | Zbl 0318.06001

[014] [15] C.B. Lekkerkerker and J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45-64. | Zbl 0105.17501

[015] [16] I.-J. Lin, M.K. Sen and D.B. West, Leafage of directed graphs, to appear.

[016] [17] T.A. McKee, Subtree catch graphs, Congr. Numer. 90 (1992) 231-238. | Zbl 0791.05022

[017] [18] E. Prisner, Representing triangulated graphs in stars, Abh. Math. Sem. Univ. Hamburg 62 (1992) 29-41, doi: 10.1007/BF02941616. | Zbl 0779.05039

[018] [19] F.S. Roberts, Indifference graphs, in: Proof Techniques in Graph Theory (F. Harary, ed.), Academic Press (1969) 139-146.

[019] [20] D.J. Rose, Triangulated graphs and the elimination process, J. Math. Ann. Appl. 32 (1970) 597-609, doi: 10.1016/0022-247X(70)90282-9. | Zbl 0216.02602

[020] [21] D.J. Rose, R.E. Tarjan and G.S. Leuker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comp. 5 (1976) 266-283, doi: 10.1137/0205021. | Zbl 0353.65019

[021] [22] Y. Shibata, On the tree representation of chordal graphs, J. Graph Theory 12 (1988) 421-428, doi: 10.1002/jgt.3190120313. | Zbl 0654.05022

[022] [23] J.R. Walter, Representations of chordal graphs as subtrees of a tree, J. Graph Theory 2 (1978) 265-267, doi: 10.1002/jgt.3190020311. | Zbl 0441.05022