Applications of saddle-point determinants
Jan Hauke ; Charles R. Johnson ; Tadeusz Ostrowski
Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015), p. 213-220 / Harvested from The Polish Digital Mathematics Library

For a given square matrix AMn() and the vector e()n of ones denote by (A,e) the matrix ⎡ A e ⎤ ⎣ eT 0 ⎦ This is often called the saddle point matrix and it plays a significant role in several branches of mathematics. Here we show some applications of it in: game theory and analysis. An application of specific saddle point matrices that are hollow, symmetric, and nonnegative is likewise shown in geometry as a generalization of Heron’s formula to give the volume of a general simplex, as well as a conditions for its existence.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276656
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1239,
     author = {Jan Hauke and Charles R. Johnson and Tadeusz Ostrowski},
     title = {Applications of saddle-point determinants},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {35},
     year = {2015},
     pages = {213-220},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1239}
}
Jan Hauke; Charles R. Johnson; Tadeusz Ostrowski. Applications of saddle-point determinants. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 213-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1239/

[000] [1] R. Almeida, A mean value theorem for internal functions and an estimation for the differential mean point, Novi Sad J. Math. 38 (2) (2008), 57-64. doi: 10.1.1.399.9060 | Zbl 1274.26081

[001] [2] M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005), 1-137. doi: 10.1017/S0962492904000212 | Zbl 1115.65034

[002] [3] I.M. Bomze, On standard quadratic optimization problems, J. Global Optimization, 13 (1998), 369-387. doi: 10.1023/A:1008369322970 | Zbl 0916.90214

[003] [4] R.H. Buchholz, Perfect pyramids, Bull. Austral. Math. Soc. 45 (1992), 353-368. doi: 10.1017/S0004972700030252

[004] [5] H.S.M. Coxeter and S.L. Greitzer, Geometry Revisited, Washington, DC, Math. Assoc. Amer. 59 (1967), 117-119. | Zbl 0166.16402

[005] [6] H. Diener and I. Loeb, Constructive reverse investigations into differential equations, J. Logic and Analysis 3 (8) (2011), 1-26. doi: 10.4115/jla.2011.3.8

[006] [7] W. Dunham, Heron's formula for triangular area, Ch. 5, Journey through Genius: The Great Theorems of Mathematics (New York, Wiley, 1990), 113-132.

[007] [8] M. Griffiths, n-dimensional enrichment for further mathematicians, The Mathematical Gazette 89 (516) (2005), 409-416. doi: 10.2307/3621932

[008] [9] M. Kline, Mathematical Thought from Ancient to Modern Times (Oxford, England, Oxford University Press, 1990). | Zbl 0784.01048

[009] [10] MathPages, Heron's Formula and Brahmagupta's Generalization, http://www.mathpages.com/home/kmath196.htm.

[010] [11] K. Menger, Untersuehungen über allgemeine metrik, Math. Ann. 100 (1928), 75-165. doi: 10.1007/BF01448840 | Zbl 54.0622.02

[011] [12] T. Ostrowski, Population equilibrium with support in evolutionary matrix games, Linear Alg. Appl. 417 (2006), 211-219. doi: 10.1016/j.laa.2006.03.039 | Zbl 1118.91022

[012] [13] T. Ostrowski, On some properties of saddle point matrices with vector blocks, Inter. J. Algebra 1 (2007), 129-138. doi: 10.1.1.518.8476 | Zbl 1138.90017

[013] [14] G. Owen, Game Theory, Emerald Group Publishing, 2013.