The rings which are Boolean
Ivan Chajda ; Filip Švrček
Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011), p. 175-184 / Harvested from The Polish Digital Mathematics Library

We study unitary rings of characteristic 2 satisfying identity xp=x for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if p=2n-2 or p=2n-5 or p=2n+1 for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form 2q+2m+1 or 2q+2m where q is a natural number and m1,2,...,2q-1.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:276738
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1181,
     author = {Ivan Chajda and Filip \v Svr\v cek},
     title = {The rings which are Boolean},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {31},
     year = {2011},
     pages = {175-184},
     zbl = {1262.06005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1181}
}
Ivan Chajda; Filip Švrček. The rings which are Boolean. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 175-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1181/

[000] [1] I.T. Adamson, Rings, modules and algebras (Oliver&Boyd, Edinburgh, 1971) | Zbl 0226.16003

[001] [2] G. Birkhoff, Lattice Theory, 3rd edition (AMS Colloq. Publ. 25, Providence, RI, 1979)

[002] [3] I. Chajda and F. Švrček, Lattice-like structures derived from rings, Contributions to General Algebra, Proc. of Salzburg Conference (AAA81), J. Hayn, Klagenfurt 20 (2011), 11-18. | Zbl 1321.06011

[003] [4] N. Jacobson, Structure of Rings (Amer. Math. Soc., Colloq. Publ. 36 (rev. ed.), Providence, RI, 1964).

[004] [5] J. Lambek, Lectures on Rings and Modules (Blaisdell Publ. Comp., Waltham, Massachusetts, Toronto, London, 1966).

[005] [6] N.H. McCoy, Theory of Rings (Mainillan Comp., New York, 1964).