We study unitary rings of characteristic 2 satisfying identity for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if or or for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form or where q is a natural number and .
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1181, author = {Ivan Chajda and Filip \v Svr\v cek}, title = {The rings which are Boolean}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {31}, year = {2011}, pages = {175-184}, zbl = {1262.06005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1181} }
Ivan Chajda; Filip Švrček. The rings which are Boolean. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 175-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1181/
[000] [1] I.T. Adamson, Rings, modules and algebras (Oliver&Boyd, Edinburgh, 1971) | Zbl 0226.16003
[001] [2] G. Birkhoff, Lattice Theory, 3rd edition (AMS Colloq. Publ. 25, Providence, RI, 1979)
[002] [3] I. Chajda and F. Švrček, Lattice-like structures derived from rings, Contributions to General Algebra, Proc. of Salzburg Conference (AAA81), J. Hayn, Klagenfurt 20 (2011), 11-18. | Zbl 1321.06011
[003] [4] N. Jacobson, Structure of Rings (Amer. Math. Soc., Colloq. Publ. 36 (rev. ed.), Providence, RI, 1964).
[004] [5] J. Lambek, Lectures on Rings and Modules (Blaisdell Publ. Comp., Waltham, Massachusetts, Toronto, London, 1966).
[005] [6] N.H. McCoy, Theory of Rings (Mainillan Comp., New York, 1964).