Solution of Belousov's problem
Maks A. Akivis ; Vladislav V. Goldberg
Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001), p. 93-103 / Harvested from The Polish Digital Mathematics Library

The authors prove that a local n-quasigroup defined by the equation xn+1=F(x,...,x)=(f(x)+...+f(x))/(x+...+x), where fi(xi), i,j = 1,...,n, are arbitrary functions, is irreducible if and only if any two functions fi(xi) and fj(xj), i ≠ j, are not both linear homogeneous, or these functions are linear homogeneous but fi(xi)/xifj(xj)/xj. This gives a solution of Belousov’s problem to construct examples of irreducible n-quasigroups for any n ≥ 3.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:287630
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1030,
     author = {Maks A. Akivis and Vladislav V. Goldberg},
     title = {Solution of Belousov's problem},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {21},
     year = {2001},
     pages = {93-103},
     zbl = {1002.20047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1030}
}
Maks A. Akivis; Vladislav V. Goldberg. Solution of Belousov's problem. Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001) pp. 93-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1030/

[000] [1] V.D. Belousov, n-ary quasigroups (Russian), Izdat. 'Shtiintsa', Kishinev 1972, 227 pp.

[001] [2] V.D. Belousov, and M. D. Sandik, n-ary quasigroups and loops (Russian), Sibirsk. Mat. Zh. 7 (1966), no. 1, 31-54. (English transl. in: Siberian Math. J. 7 (1966), no. 1, 24-42). | Zbl 0199.05201

[002] [3] W. Blaschke, Einführung in die Geometrie der Waben, Birkhäuser-Verlag, Basel-Stuttgart 1955, 108 pp. (Russian transl. GITTL, Moscow 1959), 144 pp. | Zbl 0068.36501

[003] [4] V.V. Borisenko, Irreducible n-quasigroups on finite sets of composite order (Russian), Mat. Issled., Vyp. 51 (1979), 38-42.

[004] [5] B.R. Frenkin, Reducibility and uniform reducibility in certain classes of n-groupoids II (Russian), Mat. Issled., Vyp. 7 (1972), no. 1 (23), 150-162. | Zbl 0247.20080

[005] [6] M.M. Glukhov, Varieties of (i, j)-reducible n-quasigroups (Russian), Mat. Issled., Vyp. 39 (1976), 67-72.

[006] [7] M.M. Glukhov, On the question of reducibility of principal parastrophies of n-quasigroups (Russian), Mat. Issled., Vyp. 113 (1990), 37-41.

[007] [8] V.V. Goldberg, The invariant characterization of certain closure conditions in ternary quasigroups (Russian), Sibirsk. Mat. Zh. 16 (1975), no. 1, 29-43. (English transl. in: Siberian Math. J. 16 (1975), no. 1, 23-34).

[008] [9] V.V. Goldberg, Reducible (n+1)-webs, group (n+1)-webs, and (2n+2)-hedral (n+1)-webs of multidimensional surfaces (Russian), Sibirsk. Mat. Zh. 17 (1976), no. 1, 44-57. (English transl. in: Siberian Math. J. 17 (1976), no. 1, 34-44).

[009] [10] V.V. Goldberg, Theory of Multicodimensional (n+1)-Webs, Kluwer Academic Publishers, Dordrecht, 1988, xxii+466 pp. | Zbl 0668.53001

[010] [11] E. Goursat, Sur les équations du second ordre a n variables, analogues a l'équation de Monge-Ampere, Bull. Soc. Math. France 27 (1899), 1-34. | Zbl 30.0326.01

[011] [12] V.V. Ryzhkov, Conjugate nets on multidimensional surfaces (Russian), Trudy Moscow. Mat. Obshch. 7 (1958).