Diophantine equations and class number of imaginary quadratic fields
Zhenfu Cao ; Xiaolei Dong
Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000), p. 199-206 / Harvested from The Polish Digital Mathematics Library

Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and μi-1,1(i=1,2), and let h(-21-eD)(e=0or1) denote the class number of the imaginary quadratic field ((-21-eD)). In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then h(-21-eD)0(modn), where D, and n satisfy k-2e+1=Dx², x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:287661
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1017,
     author = {Zhenfu Cao and Xiaolei Dong},
     title = {Diophantine equations and class number of imaginary quadratic fields},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {20},
     year = {2000},
     pages = {199-206},
     zbl = {0979.11020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1017}
}
Zhenfu Cao; Xiaolei Dong. Diophantine equations and class number of imaginary quadratic fields. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 199-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1017/

[000] [1] J. Buchmann and H.C. Williams, Quadratic fields and cryptography, 'Number Theory and Cryptography', University Press, Cambridge 1990, 9-25. | Zbl 0711.11038

[001] [2] Z. Cao, An Erdös conjecture, Pell sequences and Diophantine equations(Chinese), J. Harbin Inst. Tech. 2 (1987), 122-124. | Zbl 0971.11510

[002] [3] Z. Cao, On the equation Dx²±1=yp, xy ≠ 0 (Chinese), J. Math. Res. Exposition 7 (1987), no. 3, 414.

[003] [4] Z. Cao, On the equation axm-by=2 (Chinese), Chinese Sci. Bull. 35 (1990), 558-559.

[004] [5] Z. Cao, On the Diophantine equation (axm-4c)/(abx-4c)=by² (Chinese), J. Harbin Inst. Tech. 23 (1991), Special Issue, 110-112. | Zbl 0971.11518

[005] [6] Z. Cao, The Diophantine equation cx+dy=zp, C.R. Math. Rep. Acad. Sci. Canada 14 (1992), 231-234.

[006] [7] Z. Cao and A. Grytczuk, Some classes of Diophantine equations connected with McFarland's and Ma's conjectures, Discuss. Math. - Algebra and Applications 2 (2000), 193-198. | Zbl 0979.11019

[007] [8] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97. | Zbl 0079.05803

[008] [9] K. Inkeri, On the diophantine equations 2y²=7k+1 and x² + 11 = 3ⁿ, Elem. Math. 34 (1979), 119-121. | Zbl 0415.10013

[009] [10] V.A. Lebesgue, Sur l’impossibilitéon nombres entiers de l’équation xm=y²+1, Nouv. Ann. Math. 9 (1850), no. 1, p. 178-181.

[010] [11] W. Ljunggren, Über die Gleichungen 1 + Dx² = 2yⁿ und 1 + Dx² = 4yⁿ, Norske Vid. Selsk. Forhandl. 15 (30) (1942), 115-118. | Zbl 68.0069.02

[011] [12] R.A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197. | Zbl 0859.11058

[012] [13] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Matem. Forenings Skr. Serie I 13 (1923), 65-82.

[013] [14] C. Richaud, Sur la résolution des équations x² - Ay² = ±1, Atti Acad. Pontif. Nuovi Lincei (1866), 177-182.

[014] [15] C. Størmer, Solution compléte en nombres entiers m, n,x, y, k de l'équation marctg 1/x + narctg1/y = kπ/4, Christiania Vid. Selsk. Skr. I, 11 (1895).

[015] [16] D.T. Walker, On the Diophantina equation mx² - ny² = ±1, Amer. Math. Monthly 74 (1967), 504-513.