Abstract inclusions in Banach spaces with boundary conditions of periodic type
Lahcene Guedda ; Ahmed Hallouz
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014), p. 229-253 / Harvested from The Polish Digital Mathematics Library

We study in the space of continuous functions defined on [0,T] with values in a real Banach space E the periodic boundary value problem for abstract inclusions of the form ⎧ xS(x(0),selF(x)) ⎨ ⎩ x (T) = x(0), where, F:[0,T]×2E is a multivalued map with convex compact values, ⊂ E, selF is the superposition operator generated by F, and S: × L¹([0,T];E) → C([0,T]; ) an abstract operator. As an application, some results are given to the periodic boundary value problem for nonlinear differential inclusions governed by m-accretive operators generating not necessarily a compact semigroups.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270538
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1164,
     author = {Lahcene Guedda and Ahmed Hallouz},
     title = {Abstract inclusions in Banach spaces with boundary conditions of periodic type},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {34},
     year = {2014},
     pages = {229-253},
     zbl = {1326.47075},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1164}
}
Lahcene Guedda; Ahmed Hallouz. Abstract inclusions in Banach spaces with boundary conditions of periodic type. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014) pp. 229-253. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1164/

[000] [1] S. Aizicovici, N.S. Papageorgiou and Staicu, Periodic solutions of nonlinear evolution inclusions in Banach spaces, J. Nonlinear Convex Anal. 7 (2) (2006) 163-177. | Zbl 1110.34037

[001] [2] R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, B.N. Rodkina and B.N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Number 55 in Oper. Theory Adv. Appl. (Birkhäuser, Basel, Boston, Berlin, 1992). doi: 10.1007/978-3-0348-5727-7

[002] [3] R. Bader, B.D. Gel'man, M.I. Kamenskii and V.V. Obukhovskii, On the topological dimension of the solutions sets for some classes of operator and differential inclusions, Discuss. Math. DICO 22 (1) (2002) 17-32. doi: 10.7151/dmdico.1030 | Zbl 1041.47031

[003] [4] R. Bader, M.I. Kamenskii and V.V. Obukhovskii, On some classes of operator inclusions with lower semicontinuous nonlinearities, Topol. Methods Nonlinear Anal. 17 (1) (2001) 143-156.

[004] [5] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces (Marcel Dekker, 1980) | Zbl 0441.47056

[005] [6] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România (Bucharest, 1976). Translated from the Romanian. doi: 10.1007/978-94-010-1537-0 | Zbl 0328.47035

[006] [7] V. Barbu, Analysis and control of nonlinear infinite-dimensional systems (Academic Press Inc., Boston, 1993) | Zbl 0776.49005

[007] [8] Yu. G. Borisovich, B.D. Gelman, A.D. Myshkis, and V.V. Obukhovskii, Multi-valued analysis and operator inclusions, J. Soviet Math 39 (1987) 2772-2811. doi: 10.1007/BF01127054 | Zbl 0725.54015

[008] [9] Ph. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach, C.R. Acad. Sci. Paris (A-B) 274 (1972) A47-A50. | Zbl 0246.47068

[009] [10] P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert, Ann. Inst. Fourier (Grenoble) 22 (2) (1972) 311-329. doi: 10.5802/aif.421 | Zbl 0226.47034

[010] [11] D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Israel J. Math 108 (1998) 109-138. doi: 10.1007/BF02783044 | Zbl 0922.47048

[011] [12] D. Bothe, Nonlinear Evolutions in Banach Spaces - Existence and Qualitative Theory with Applications to Reaction-Diffusion Systems, Habilitation thesis (Univ. of Paderborn, 1999).

[012] [13] J.F. Couchouron and M. Kamenskii, A unified topological point of view for integro-differential inclusions and optimal control. (J.Andres, L. Górniewicz and P. Nistri eds.), Lecture Notes in Nonlinear Anal. 2 (1998) 123-137. | Zbl 1105.45005

[013] [14] J.-F. Couchouron and M. Kamenskii, An abstract topological point of view and a general averaging principle in the theory of differential inclusions, Nonlinear Anal. (A) 42 (6) (2000) 1101-1129. doi: 10.1016/S0362-546X(99)00181-9 | Zbl 0972.34049

[014] [15] J. Diestel, W.M. Ruess, and W. Schachermayer, On weak compactness in L¹(μ,X), Proc. Amer. Math. Soc. 118 (2) (1993) 447-453.

[015] [16] J. Diestel and J.J. Uhl, Jr., Vector measures, American Mathematical Society (Providence, R.I., 1977). doi: 10.1090/surv/015. | Zbl 0369.46039

[016] [17] L. Górniewicz, A. Granas and W. Kryszewski, Sur la méthode de l'homotopie dans la théoorie des point fixes pour les applications multivoques, Partie 2: L 'indiee dans les ANRs compaetes, Comptes Rendus de l'Aeadémie des Sciences, Paris 308 (1989) 449-452.

[017] [18] L. Górniewicz, Topological fixed point theory of multivalued mappings (Kluwer Academic Publishers, 1999). doi: 10.1007/978-94-015-9195-9 | Zbl 0937.55001

[018] [19] S. Gutman, Evolutions governed by m-accretive plus compact operators, Nonlinear Anal. 7 (7) (1983) 707-715. doi: 10.1016/0362-546X(83)90027-5 | Zbl 0518.34055

[019] [20] T. Kato, Nonlinear evolution equations, Proc. Sympos. Appl. Math 17 (1965) 50-67. doi: 10.1090/psapm/017/0184099

[020] [21] N. Halidias and N.S. Papageorgiou, Nonlinear boundary value problems with maximal monotone terms, Aequationes Math 59 (2000) 93-107. doi: 10.1007/PL00000131 | Zbl 0947.34009

[021] [22] M.I. Kamenskii, V.V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Number 7 in de Gruyter Series in Nonlinear Analysis and Applications, de Gruyter (Berlin, 2001). | Zbl 0988.34001

[022] [23] N.S. Papageorgiou, On multivalued evolution equations and differential inclusions in Banach spaces, Comment. Math. Univ. St. Paul 36 (1) (1987) 21-39. | Zbl 0641.47052

[023] [24] A. Pazy, Initial value problems for nonlinear differential equations in Banach spaces, in: Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982), volume 84 of Res. Notes in Math. (Pitman, Boston, MA, 1983), 154-172.

[024] [25] A. Pazy, Semigroups of linear operators and applications to partial differential equations (Springer-Verlag, New York, 1983). doi: 10.1007/978-1-4612-5561-1 | Zbl 0516.47023

[025] [26] Jan Prüss, On semilinear evolution equations in Banach spaces, J. Reine Angew. Math 303/304 (1978) 144-158 | Zbl 0398.34057

[026] [27] A. Tolstonogov, Differential inclusions in a Banach space (Kluwer Academic Publishers, 2000). doi: 10.1007/978-94-015-9490-5 | Zbl 1021.34002

[027] [28] I.I. Vrabie, Compactness methods for nonlinear evolutions (Longman, Harlow, 1987)

[028] [29] I.I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (3) (1990) 653-661. doi: 10.1090/S0002-9939-1990-1015686-4 | Zbl 0701.34074