On functional differential inclusions in Hilbert spaces
Myelkebir Aitalioubrahim
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 32 (2012), p. 63-85 / Harvested from The Polish Digital Mathematics Library

We prove the existence of monotone solutions, of the functional differential inclusion ẋ(t) ∈ f(t,T(t)x) +F(T(t)x) in a Hilbert space, where f is a Carathéodory single-valued mapping and F is an upper semicontinuous set-valued mapping with compact values contained in the Clarke subdifferential cV(x) of a uniformly regular function V.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270498
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1139,
     author = {Myelkebir Aitalioubrahim},
     title = {On functional differential inclusions in Hilbert spaces},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {32},
     year = {2012},
     pages = {63-85},
     zbl = {1298.34115},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1139}
}
Myelkebir Aitalioubrahim. On functional differential inclusions in Hilbert spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 32 (2012) pp. 63-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1139/

[000] [1] M. Aitalioubrahim and S. Sajid, viability problem with perturbation in Hilbert space, Electron. J. Qual. Theory Differ. Equ. 7 (2007) 1-14.

[001] [2] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4

[002] [3] M. Bounkhel, Existence results of nonconvex differential inclusions, Portugal. Math. 59 (3) (2002) 283-310. | Zbl 1022.34007

[003] [4] A. Bressan, A. Cellina and G. Colombo, Upper semicontinuous differential inclusions without convexity, Proc. Amer. Math. Soc. 106 (1989) 771-775. doi: 10.1090/S0002-9939-1989-0969314-6 | Zbl 0698.34014

[004] [5] A. Cernea and V. Lupulescu, Viable solutions for a class of nonconvex functional differential inclusions, Math. Reports 7(57) (2) (2005) 91-103. | Zbl 1100.34049

[005] [6] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley and Sons, 1983. | Zbl 0582.49001

[006] [7] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998. | Zbl 1047.49500

[007] [8] K. Deimling, Multivalued Defferential Equations. De Gruyter Series in Non linear Analysis and Applications, Walter de Gruyter, Berlin, New York, 1992.

[008] [9] A. Gavioli and L. Malaguti, Viable solutions of differential inclusions with memory in Banach spaces, Portugal. Math. 57 Fasc. 2 (2000). | Zbl 0963.34059

[009] [10] G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. Math. 39 (1981) 83-100. doi: 10.1007/BF02762855 | Zbl 0462.34048

[010] [11]G. Haddad, Monotone trajectories for functional differential inclusions, J. Differential Equations 42 (1981) 1-24. doi: 10.1016/0022-0396(81)90031-0

[011] [12] R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 39 (1980) 257-280. doi: 10.4153/CJM-1980-020-7 | Zbl 0447.49009

[012] [13] A. Syam, Contributions aux Inclusions Différentielles, Ph. thesis, Université Montpellier II, 1993.