Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals
Ireneusz Kubiaczyk ; Aneta Sikorska-Nowak
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 29 (2009), p. 113-126 / Harvested from The Polish Digital Mathematics Library

In the paper, we prove the existence of solutions and Carathéodory’s type solutions of the dynamic Cauchy problem xΔ(t)=f(t,x(t)), t ∈ T, x(0) = x₀, where T denotes an unbounded time scale (a nonempty closed subset of R and such that there exists a sequence (xₙ) in T and xₙ → ∞) and f is continuous or satisfies Carathéodory’s conditions and some conditions expressed in terms of measures of noncompactness. The Sadovskii fixed point theorem and Ambrosetti’s lemma are used to prove the main result. The results presented in the paper are new not only for Banach valued functions, but also for real-valued functions.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:271140
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1108,
     author = {Ireneusz Kubiaczyk and Aneta Sikorska-Nowak},
     title = {Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {29},
     year = {2009},
     pages = {113-126},
     zbl = {1198.34197},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1108}
}
Ireneusz Kubiaczyk; Aneta Sikorska-Nowak. Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 29 (2009) pp. 113-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1108/

[000] [1] R.P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Result Math. 35 (1999), 3-22. | Zbl 0927.39003

[001] [2] R.P. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl. 4 (4) (2001), 535-557. | Zbl 1021.34005

[002] [3] R.P. Agarwal and D. O'Regan, Nonlinear boundary value problems on time scales, Nonlin. Anal. TMA 44 (2001), 527-535. | Zbl 0995.34016

[003] [4] R.P. Agarwal and D. O'Regan, Difference equations in Banach spaces, J. Austral. Math. Soc. (A) 64 (1998), 277-284.

[004] [5] R.P. Agarwal and D. O'Regan, A fixed point approach for nonlinear discrete boundary value problems, Comp. Math. Appl. 36 (1998), 115-121. | Zbl 0933.39004

[005] [6] R.P. Agarwal, D. O'Regan and S.H. Saker, Properties of bounded solutions of nonlinear dynamic equations on time scales, Can. Appl. Math. Q. 14 (1) (2006), 1-10. | Zbl 1147.34027

[006] [7] E. Akin-Bohner, M. Bohner and F. Akin, Pachpate inequalities on time scale, J. Inequal. Pure and Appl. Math. 6 (1) Art. 6, (2005). | Zbl 1086.34014

[007] [8] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova 39 (1967), 349-361.

[008] [9] G. Aslim and G.Sh. Guseinov, Weak semiring, ω-semirings, and measures, Bull. Allahabad Math. Soc. 14 (1999), 1-20.

[009] [10] B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time scale, Nonlinear Dynamics and Quantum Dynamical Systems, Akademie Verlag, Berlin, 1990. | Zbl 0719.34088

[010] [11] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math. 60, Dekker, New York and Basel, 1980. | Zbl 0441.47056

[011] [12] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkäuser, 2001. | Zbl 0978.39001

[012] [13] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser, Boston, 2003. | Zbl 1025.34001

[013] [14] A. Cellina, On existence of solutions of ordinary differential equations in Banach spaces, Func. Ekvac. 14 (1971), 129-136. | Zbl 0271.34071

[014] [15] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlin. Anal. TMA 60 (2005), 651-667. | Zbl 1061.34043

[015] [16] M. Dawidowski, I. Kubiaczyk and J. Morchało, A discrete boundary value problem in Banach spaces, Glasnik Mat. 36 (2001), 233-239. | Zbl 1011.39002

[016] [17] R. Dragoni, J.W. Macki, P. Nistri and P. Zecca, Solution Sets of Differential Equations in Abstract Spaces, Longmann, 1996. | Zbl 0847.34004

[017] [18] L. Erbe and A. Peterson, Green's functions and comparison theorems for differential equations on measure chains, Dynam. Contin. Discrete Impuls. Systems 6 (1) (1999), 121-137. | Zbl 0938.34027

[018] [19] G.Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127. | Zbl 1039.26007

[019] [20] C. Gonzalez and A. Jimenez-Meloda, Set-contractive mappings and difference equations in Banach spaces, Comp. Math. Appl. 45 (2003), 1235-1243. | Zbl 1057.39001

[020] [21] S. Hilger, Ein Maßkettenkalkül mit Anvendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität at Würzburg, 1988. | Zbl 0695.34001

[021] [22] S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56. | Zbl 0722.39001

[022] [23] B. Kaymakcalan, V. Lakshmikantham and S. Sivasundaram, Dynamical Systems on Measure Chains, Kluwer Akademic Publishers, Dordrecht, 1996. | Zbl 0869.34039

[023] [24] I. Kubiaczyk, On the existence of solutions of differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 607-614. | Zbl 0607.34055

[024] [25] B.N. Sadovskii, Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144.

[025] [26] S. Szufla, Measure of noncompanctness and ordinary differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 19 (1971), 831-835. | Zbl 0218.46016