How to define "convex functions" on differentiable manifolds
Stefan Rolewicz
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 29 (2009), p. 7-17 / Harvested from The Polish Digital Mathematics Library

In the paper a class of families (M) of functions defined on differentiable manifolds M with the following properties: 1. if M is a linear manifold, then (M) contains convex functions, 2. (·) is invariant under diffeomorphisms, 3. each f ∈ (M) is differentiable on a dense Gδ-set, is investigated.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:271159
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1101,
     author = {Stefan Rolewicz},
     title = {How to define "convex functions" on differentiable manifolds},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {29},
     year = {2009},
     pages = {7-17},
     zbl = {1201.58005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1101}
}
Stefan Rolewicz. How to define "convex functions" on differentiable manifolds. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 29 (2009) pp. 7-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1101/

[000] [1] E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel Jour. Math. 4 (1966), 213-216. | Zbl 0143.34904

[001] [2] E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. | Zbl 0162.17501

[002] [3] S. Lang, Introduction to differentiable manifolds, Interscience Publishers (division of John Wiley & Sons) New York, London, 1962. | Zbl 0103.15101

[003] [4] S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Stud. Math. 4 (1933), 70-84. | Zbl 59.1074.01

[004] [5] E. Michael, Local properties of topological spaces, Duke Math. Jour. 21 (1954), 163-174.

[005] [6] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, Springer-Verlag, 1364 (1989). | Zbl 0658.46035

[006] [7] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Proc. 11-th Winter School, Suppl. Rend. Circ. Mat di Palermo, ser II, 3 (1984), 219-223. | Zbl 0547.46026

[007] [8] S. Rolewicz, On α(·)-monotone multifunction and differentiability of γ-paraconvex functions, Stud. Math. 133 (1999), 29-37. | Zbl 0920.47047

[008] 9[] S. Rolewicz, On α(·)-paraconvex and strongly α(·)-paraconvex functions, Control and Cybernetics 29 (2000), 367-377. | Zbl 1030.90092

[009] [10] S. Rolewicz, On the coincidence of some subdifferentials in the class of α(·)-paraconvex functions, Optimization 50 (2001), 353-360. | Zbl 1008.52003

[010] [11] S. Rolewicz, On uniformly approximate convex and strongly α(·)-paraconvex functions, Control and Cybernetics 30 (2001), 323-330. | Zbl 1038.26009

[011] [12] S. Rolewicz, α(·)-monotone multifunctions and differentiability of strongly α(·)-paraconvex functions, Control and Cybernetics 31 (2002), 601-619. | Zbl 1125.49304

[012] [13] S. Rolewicz, On differentiability of strongly α(·)-paraconvex functions in non-separable Asplund spaces, Studia Math. 167 (2005), 235-244. | Zbl 1074.46050

[013] [14] S. Rolewicz, Paraconvex analysis, Control and Cybernetics 34 (2005), 951-965. | Zbl 1167.49306

[014] [15] S. Rolewicz, An extension of Mazur Theorem about Gateaux differentiability, Studia Math. 172 (2006), 243-248. | Zbl 1106.46026

[015] [16] S. Rolewicz, Paraconvex Analysis on CE1,u-manifolds, Optimization 56 (2007), 49-60. | Zbl 1124.58006

[016] [17] L. Zajicěk, Differentiability of approximately convex, semiconcave and strongly paraconvex functions, Jour. Convex Analysis 15 (2008), 1-15. | Zbl 1140.46021