Evolution equations in ostensible metric spaces: First-order evolutions of nonsmooth sets with nonlocal terms
Thomas Lorenz
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 28 (2008), p. 15-73 / Harvested from The Polish Digital Mathematics Library

Similarly to quasidifferential equations of Panasyuk, the so-called mutational equations of Aubin provide a generalization of ordinary differential equations to locally compact metric spaces. Here we present their extension to a nonempty set with a possibly nonsymmetric distance. In spite of lacking any linear structures, a distribution-like approach leads to so-called right-hand forward solutions. These extensions are mainly motivated by compact subsets of the Euclidean space whose evolution is determined by the nonlocal properties of both the current set and the normal cones at its topological boundary. Indeed, simple deformations such as isotropic expansions exemplify that topological boundaries do not have to evolve continuously in time and thus Aubin's original concept cannot be applied directly. Here neither regularity assumptions about the boundaries nor the inclusion principle are required. The regularity of compact reachable sets of differential inclusions is studied extensively instead. This example of nonlocal set evolutions in the Euclidean space serves as an introductory motivation for extending ordinary differential equations (and evolution equations) beyond the traditional border of vector spaces - and for combining it with other examples in systems.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:271152
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1094,
     author = {Thomas Lorenz},
     title = {Evolution equations in ostensible metric spaces: First-order evolutions of nonsmooth sets with nonlocal terms},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {28},
     year = {2008},
     pages = {15-73},
     zbl = {1192.34070},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1094}
}
Thomas Lorenz. Evolution equations in ostensible metric spaces: First-order evolutions of nonsmooth sets with nonlocal terms. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 28 (2008) pp. 15-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1094/

[000] [1] L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in: Buttazzo, G. (ed.) et al., Calculus of variations and partial differential equations. Topics on geometrical evolution problems and degree theory (Springer-Verlag, 2000).

[001] [2] J.-P. Aubin, Mutational and Morphological Analysis: Tools for Shape Evolution and Morphogenesis (Birkhäuser-Verlag, Systems and Control, 1999). | Zbl 0923.58005

[002] [3] J.-P. Aubin, Mutational equations in metric spaces, Set-Valued Analysis 1 (1993), 3-46. | Zbl 0784.34015

[003] [4] J.-P. Aubin, A note on differential calculus in metric spaces and its applications to the evolution of tubes, Bull. Pol. Acad. Sci., Math. 40 (2) (1992), 151-162. | Zbl 0780.49014

[004] [5] J.-P. Aubin, Viability Theory (Birkhäuser-Verlag, Systems and Control, 1991).

[005] [6] G. Barles and O. Ley, Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics, Commun. Partial Differ. Equations 31 (8) (2006), 1191-1208. | Zbl 1109.35026

[006] [7] G. Barles, H.M. Soner and P.E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optimization 31 (2) (1993), 439-469. | Zbl 0785.35049

[007] [8] G. Barles and P. Souganidis, A new approach to front propagation problems: theory and applications, Arch. Ration. Mech. Anal. 141 (3) (1998), 237-296.

[008] [9] E.N. Barron, P. Cannarsa, R. Jensen and C. Sinestrari, Regularity of Hamilton-Jacobi equations when forward is backward, Indiana Univ. Math. J. 48 (2) (1999), 385-409. | Zbl 0939.35044

[009] [10] G. Bellettini and M. Novaga, Comparison results between minimal barriers and viscosity solutions for geometric evolutions, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 26 (1) (1998), 97-131. | Zbl 0904.35041

[010] [11] G. Bellettini and M. Novaga, Minimal barriers for geometric evolutions, J. Differ. Equations 139 (1) (1997), 76-103. | Zbl 0882.35028

[011] [12] K. Brakke, The Motion of a Surface by its Mean Curvature, Princeton University Press, 1978. | Zbl 0386.53047

[012] [13] A. Bressan, On two conjectures by Hájek, Funkcial. Ekvac. 23 (1980), 221-227. | Zbl 0447.49035

[013] [14] P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems, ESAIM Control Optim. Calc. Var. 12 (2006), 350-370. | Zbl 1105.93007

[014] [15] P. Cardaliaguet, Front propagation problems with nonlocal terms II, J. Math. Anal. Appl. 260 (2) (2001), 572-601. | Zbl 1002.35064

[015] [16] P. Cardaliaguet, On front propagation problems with nonlocal terms, Adv. Differ. Equ. 5 (1-3) (2000), 213-268. | Zbl 1029.53081

[016] [17] N. Caroff and H. Frankowska, Conjugate points and shocks in nonlinear optimal control, Trans. Amer. Math. Soc. 348 (8) (1996), 3133-3153. | Zbl 0924.49016

[017] [18] Yun-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differ. Geom. 33 (3) (1991), 749-786. | Zbl 0696.35087

[018] [19] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, Canadian Mathematical Society Series of Monographs and Advanced Texts, 1983. | Zbl 0582.49001

[019] [20] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Complements, approximations, smoothings and invariance properties, J. Convex Anal. 4 (2) (1997), 189-219. | Zbl 0905.49010

[020] [21] F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower-C² property, J. Convex Anal. 2 (1/2) (1995), 117-144. | Zbl 0881.49008

[021] [22] B. Cornet and M.-O. Czarnecki, Smooth normal approximations of epi-Lipschitzian subsets of ℝⁿ, SIAM J. Control Optim. 37 (3) (1999), 710-730. | Zbl 0945.49014

[022] [23] M. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., New Ser. 27 (1) (1992), 1-67. | Zbl 0755.35015

[023] [24] M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1) (1983), 1-42. | Zbl 0599.35024

[024] [25] L. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differ. Geom. 33 (3) (1991), 635-681. | Zbl 0726.53029

[025] [26] L. Evans and J. Spruck, Motion of level sets by mean curvature II, Trans. Amer. Math. Soc. 330 (1) (1992), 321-332. | Zbl 0776.53005

[026] [27] E. De Giorgi, Barriers, boundaries, motion of manifolds, Lectures held in Pavia, Italy, 1994.

[027] [28] M.C. Delfour and J.-P. Zolésio, Evolution equations for shapes and geometries, J. Evol. Equ. 6 (2006), 399-417. | Zbl 1109.35025

[028] [29] M.C. Delfour and J.-P. Zolésio, Shapes and geometries. Analysis, differential calculus, and optimization, SIAM, Advances in Design and Control 4, 2001. | Zbl 1002.49029

[029] [30] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491. | Zbl 0089.38402

[030] [31] H. Federer, Geometric Measure Theory, Springer-Verlag, Grundlehren der mathematischen Wissenschaften 153, 1969. | Zbl 0176.00801

[031] [32] H. Frankowska, Value function in optimal control, in: Agrachev, A.A. (ed.), Mathematical control theory, ICTP Lect. Notes. 8 (2002), 515-653. | Zbl 1098.49501

[032] [33] J.C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc., III. Ser. 13 (1963), 71-89. | Zbl 0107.16401

[033] [34] P.E. Kloeden, B.N. Sadovsky and I.E. Vasilyeva, Quasi-flows and equations with nonlinear differentials, Nonlinear Anal. 51 (7) (2002), 1143-1158. | Zbl 1017.34004

[034] [35] H.-P. Künzi, Complete quasi-pseudo-metric spaces, Acta Math. Hung. 59 (1/2) (1992), 121-146. | Zbl 0784.54026

[035] [36] A. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser-Verlag, Systems and Control, 1997.

[036] [37] A.B. Kurzhanski and P. Varaiya, On reachability under uncertainty, SIAM J. Control Optimization 41 (1) (2002), 181-216. | Zbl 1025.34061

[037] [38] A.B. Kurzhanski and O.I. Nikonov, Funnel equations and multivalued integration problems for control synthesis, in: Perspectives in control theory, Proc. Conf., Sielpia/Pol. 1988, Prog. Syst. Control Theory 2 (1990), 143-153.

[038] [39] Th. Lorenz, Generalizing mutational equations for uniqueness of some nonlocal 1st-order geometric evolutions, Set-Valued Analysis 16 (2008), 1-50. | Zbl 1133.49017

[039] [40] Th. Lorenz, Radon measures solving the Cauchy problem of the nonlinear transport equation, (2007) IWR Preprint available at http://www.ub.uni-heidelberg.de/archiv/7252.

[040] [41] Th. Lorenz, Evolution equations in ostensible metric spaces: Definitions and existence, (2005) IWR Preprint available at http://www.ub.uni-heidelberg.de/archiv/5519.

[041] [42] Th. Lorenz, Boundary regularity of reachable sets of control systems, Syst. Control Lett. 54 (9) (2005), 919-924. | Zbl 1129.93314

[042] [43] Th. Lorenz, First-order geometric evolutions and semilinear evolution equations: A common mutational approach, Ph.D. thesis, Ruprecht-Karls-University of Heidelberg, (2004) available at http://www.ub.uni-heidelberg.de/archiv/4949. | Zbl 1085.49006

[043] [44] S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1) (1988), 12-49. | Zbl 0659.65132

[044] [45] A.I. Panasyuk, Quasidifferential equations in a complete metric space under conditions of the Carathéodory type I, Differ. Equations 31 (6) (1995), 901-910. | Zbl 0861.34050

[045] [46] A.I. Panasyuk, Properties of solutions of a quasidifferential approximation equation and the equation of an integral funnel, Differ. Equations 28 (9) (1992), 1259-1266. | Zbl 0801.34021

[046] [47] A.I. Panasyuk, Quasidifferential equations in metric spaces, Differ. Equations 21 (1985), 914-921. | Zbl 0624.34056

[047] [48] R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352 (11) (2000), 5231-5249. | Zbl 0960.49018

[048] [49] R.T. Rockafellar and R. Wets, Variational Analysis, Springer-Verlag, Grundlehren der mathematischen Wissenschaften 317 (1998).

[049] [50] H.L. Royden, Comparison theorems for the matrix Riccati equation, Commun. Pure Appl. Math. 41 (5) (1988), 739-746. | Zbl 0632.34028

[050] [51] T. Rzeżuchowski, Boundary solutions of differential inclusions and recovering the initial data, Set-Valued Analysis 5 (1997), 181-193. | Zbl 0910.34028

[051] [52] T. Rzeżuchowski, Continuous parameterization of attainable sets by solutions of differential inclusions, Set-Valued Analysis 7 (1999), 347-355. | Zbl 0953.34012

[052] [53] R.A. Stoltenberg, On quasi-metric spaces, Duke Math. J. 36 (1969), 65-71. | Zbl 0176.51902

[053] [54] R. Vinter, Optimal Control, Birkhäuser-Verlag, Systems and Control, 2000.

[054] [55] W.A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684. | Zbl 0002.05503