We investigate some geometrical properties of squares of special Sierpiński sets. In particular, we prove that (under CH) there exists a Sierpiński set S and a function p: S → S such that the images of the graph of this function under π'(⟨x,y⟩) = x - y and π''(⟨x,y⟩) = x + y are both Lusin sets.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-7,
author = {Andrzej Nowik},
title = {On some properties of squares of Sierpi\'nski sets},
journal = {Colloquium Mathematicae},
volume = {100},
year = {2004},
pages = {221-229},
zbl = {1058.03047},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-7}
}
Andrzej Nowik. On some properties of squares of Sierpiński sets. Colloquium Mathematicae, Tome 100 (2004) pp. 221-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-7/