We investigate some geometrical properties of squares of special Sierpiński sets. In particular, we prove that (under CH) there exists a Sierpiński set S and a function p: S → S such that the images of the graph of this function under π'(⟨x,y⟩) = x - y and π''(⟨x,y⟩) = x + y are both Lusin sets.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-7, author = {Andrzej Nowik}, title = {On some properties of squares of Sierpi\'nski sets}, journal = {Colloquium Mathematicae}, volume = {100}, year = {2004}, pages = {221-229}, zbl = {1058.03047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-7} }
Andrzej Nowik. On some properties of squares of Sierpiński sets. Colloquium Mathematicae, Tome 100 (2004) pp. 221-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-7/