Semiclassical distribution of eigenvalues for elliptic operators with Hölder continuous coefficients, part i: non-critical case
Lech Zieliński
Colloquium Mathematicae, Tome 100 (2004), p. 157-174 / Harvested from The Polish Digital Mathematics Library

We consider a version of the Weyl formula describing the asymptotic behaviour of the counting function of eigenvalues in the semiclassical approximation for self-adjoint elliptic differential operators under weak regularity hypotheses. Our aim is to treat Hölder continuous coefficients and to investigate the case of critical energy values as well.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:285239
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-2,
     author = {Lech Zieli\'nski},
     title = {Semiclassical distribution of eigenvalues for elliptic operators with H\"older continuous coefficients, part i: non-critical case},
     journal = {Colloquium Mathematicae},
     volume = {100},
     year = {2004},
     pages = {157-174},
     zbl = {1199.35267},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-2}
}
Lech Zieliński. Semiclassical distribution of eigenvalues for elliptic operators with Hölder continuous coefficients, part i: non-critical case. Colloquium Mathematicae, Tome 100 (2004) pp. 157-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-2/