We consider a version of the Weyl formula describing the asymptotic behaviour of the counting function of eigenvalues in the semiclassical approximation for self-adjoint elliptic differential operators under weak regularity hypotheses. Our aim is to treat Hölder continuous coefficients and to investigate the case of critical energy values as well.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-2,
author = {Lech Zieli\'nski},
title = {Semiclassical distribution of eigenvalues for elliptic operators with H\"older continuous coefficients, part i: non-critical case},
journal = {Colloquium Mathematicae},
volume = {100},
year = {2004},
pages = {157-174},
zbl = {1199.35267},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-2}
}
Lech Zieliński. Semiclassical distribution of eigenvalues for elliptic operators with Hölder continuous coefficients, part i: non-critical case. Colloquium Mathematicae, Tome 100 (2004) pp. 157-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-2/