Let denote an ideal of a commutative Noetherian ring R, and M and N two finitely generated R-modules with pd M < ∞. It is shown that if either is principal, or R is complete local and is a prime ideal with dim R/ = 1, then the generalized local cohomology module is -cofinite for all i ≥ 0. This provides an affirmative answer to a question proposed in [13].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-12,
author = {Kamran Divaani-Aazar and Reza Sazeedeh},
title = {Cofiniteness of generalized local cohomology modules},
journal = {Colloquium Mathematicae},
volume = {100},
year = {2004},
pages = {283-290},
zbl = {1072.13011},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-12}
}
Kamran Divaani-Aazar; Reza Sazeedeh. Cofiniteness of generalized local cohomology modules. Colloquium Mathematicae, Tome 100 (2004) pp. 283-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-12/