We prove some quantitatively sharp estimates concerning the Δ₂ and ∇₂ conditions for functions which generalize known ones. The sharp forms arise in the connection between Orlicz space theory and the theory of elliptic partial differential equations.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-7,
author = {Gary M. Lieberman},
title = {Orlicz spaces, a-decreasing functions, and the D2 condition},
journal = {Colloquium Mathematicae},
volume = {100},
year = {2004},
pages = {113-120},
zbl = {1095.26003},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-7}
}
Gary M. Lieberman. Orlicz spaces, α-decreasing functions, and the Δ₂ condition. Colloquium Mathematicae, Tome 100 (2004) pp. 113-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-7/