Cylinder cocycle extensions of minimal rotations on monothetic groups
Mieczysław K. Mentzen ; Artur Siemaszko
Colloquium Mathematicae, Tome 100 (2004), p. 75-88 / Harvested from The Polish Digital Mathematics Library

The main results of this paper are: 1. No topologically transitive cocycle m-extension of minimal rotation on the unit circle by a continuous real-valued bounded variation ℤ-cocycle admits minimal subsets. 2. A minimal rotation on a compact metric monothetic group does not admit a topologically transitive real-valued cocycle if and only if the group is finite.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283831
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-5,
     author = {Mieczys\l aw K. Mentzen and Artur Siemaszko},
     title = {Cylinder cocycle extensions of minimal rotations on monothetic groups},
     journal = {Colloquium Mathematicae},
     volume = {100},
     year = {2004},
     pages = {75-88},
     zbl = {1058.54018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-5}
}
Mieczysław K. Mentzen; Artur Siemaszko. Cylinder cocycle extensions of minimal rotations on monothetic groups. Colloquium Mathematicae, Tome 100 (2004) pp. 75-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-5/