The main results of this paper are: 1. No topologically transitive cocycle -extension of minimal rotation on the unit circle by a continuous real-valued bounded variation ℤ-cocycle admits minimal subsets. 2. A minimal rotation on a compact metric monothetic group does not admit a topologically transitive real-valued cocycle if and only if the group is finite.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-5, author = {Mieczys\l aw K. Mentzen and Artur Siemaszko}, title = {Cylinder cocycle extensions of minimal rotations on monothetic groups}, journal = {Colloquium Mathematicae}, volume = {100}, year = {2004}, pages = {75-88}, zbl = {1058.54018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-5} }
Mieczysław K. Mentzen; Artur Siemaszko. Cylinder cocycle extensions of minimal rotations on monothetic groups. Colloquium Mathematicae, Tome 100 (2004) pp. 75-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-5/