Lp bounds for spectral multipliers on rank one NA-groups with roots not all positive
Emilie David-Guillou
Colloquium Mathematicae, Tome 100 (2004), p. 51-74 / Harvested from The Polish Digital Mathematics Library

We consider a family of non-unimodular rank one NA-groups with roots not all positive, and we show that on these groups there exists a distinguished left invariant sub-Laplacian which admits a differentiable Lp functional calculus for every p ≥ 1.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284019
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-4,
     author = {Emilie David-Guillou},
     title = {$L^{p}$ bounds for spectral multipliers on rank one NA-groups with roots not all positive},
     journal = {Colloquium Mathematicae},
     volume = {100},
     year = {2004},
     pages = {51-74},
     zbl = {1056.22003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-4}
}
Emilie David-Guillou. $L^{p}$ bounds for spectral multipliers on rank one NA-groups with roots not all positive. Colloquium Mathematicae, Tome 100 (2004) pp. 51-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-4/