We consider a family of non-unimodular rank one NA-groups with roots not all positive, and we show that on these groups there exists a distinguished left invariant sub-Laplacian which admits a differentiable functional calculus for every p ≥ 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-4, author = {Emilie David-Guillou}, title = {$L^{p}$ bounds for spectral multipliers on rank one NA-groups with roots not all positive}, journal = {Colloquium Mathematicae}, volume = {100}, year = {2004}, pages = {51-74}, zbl = {1056.22003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-4} }
Emilie David-Guillou. $L^{p}$ bounds for spectral multipliers on rank one NA-groups with roots not all positive. Colloquium Mathematicae, Tome 100 (2004) pp. 51-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm101-1-4/