Twisted group rings of strongly unbounded representation type
Leonid F. Barannyk ; Dariusz Klein
Colloquium Mathematicae, Tome 100 (2004), p. 265-287 / Harvested from The Polish Digital Mathematics Library

Let S be a commutative local ring of characteristic p, which is not a field, S* the multiplicative group of S, W a subgroup of S*, G a finite p-group, and SλG a twisted group ring of the group G and of the ring S with a 2-cocycle λ ∈ Z²(G,S*). Denote by Indm(SλG) the set of isomorphism classes of indecomposable SλG-modules of S-rank m. We exhibit rings SλG for which there exists a function fλ: such that fλ(n)n and Indfλ(n)(SλG) is an infinite set for every natural n > 1. In special cases fλ() contains every natural number m > 1 such that Indm(SλG) is an infinite set. We also introduce the concept of projective (S,W)-representation type for the group G and we single out finite groups of every type.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284144
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-8,
     author = {Leonid F. Barannyk and Dariusz Klein},
     title = {Twisted group rings of strongly unbounded representation type},
     journal = {Colloquium Mathematicae},
     volume = {100},
     year = {2004},
     pages = {265-287},
     zbl = {1069.16030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-8}
}
Leonid F. Barannyk; Dariusz Klein. Twisted group rings of strongly unbounded representation type. Colloquium Mathematicae, Tome 100 (2004) pp. 265-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-8/