Let R be a commutative Noetherian ring. Let and be ideals of R and let N be a finitely generated R-module. We introduce a generalization of the -finiteness dimension of relative to in the context of generalized local cohomology modules as , where M is an R-module. We also show that for any R-module M. This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-5,
author = {K. Khashyarmanesh and M. Yassi and A. Abbasi},
title = {A new version of Local-Global Principle for annihilations of local cohomology modules},
journal = {Colloquium Mathematicae},
volume = {100},
year = {2004},
pages = {213-219},
zbl = {1102.13017},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-5}
}
K. Khashyarmanesh; M. Yassi; A. Abbasi. A new version of Local-Global Principle for annihilations of local cohomology modules. Colloquium Mathematicae, Tome 100 (2004) pp. 213-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-5/