An L¹-stability and uniqueness result for balance laws with multifunctions: a model from the theory of granular media
Piotr Gwiazda ; Agnieszka Świerczewska
Colloquium Mathematicae, Tome 100 (2004), p. 149-162 / Harvested from The Polish Digital Mathematics Library

We study the uniqueness and L¹-stability of the Cauchy problem for a 2 × 2 system coming from the theory of granular media [9,10]. We work in a class of weak entropy solutions. The appearance of a multifunction in a source term, given by the Coulomb-Mohr friction law, requires a modification of definition of the weak entropy solution [5,6].

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283592
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-1,
     author = {Piotr Gwiazda and Agnieszka \'Swierczewska},
     title = {An L$^1$-stability and uniqueness result for balance laws with multifunctions: a model from the theory of granular media},
     journal = {Colloquium Mathematicae},
     volume = {100},
     year = {2004},
     pages = {149-162},
     zbl = {1054.35028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-1}
}
Piotr Gwiazda; Agnieszka Świerczewska. An L¹-stability and uniqueness result for balance laws with multifunctions: a model from the theory of granular media. Colloquium Mathematicae, Tome 100 (2004) pp. 149-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-1/