We study the uniqueness and L¹-stability of the Cauchy problem for a 2 × 2 system coming from the theory of granular media [9,10]. We work in a class of weak entropy solutions. The appearance of a multifunction in a source term, given by the Coulomb-Mohr friction law, requires a modification of definition of the weak entropy solution [5,6].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-1, author = {Piotr Gwiazda and Agnieszka \'Swierczewska}, title = {An L$^1$-stability and uniqueness result for balance laws with multifunctions: a model from the theory of granular media}, journal = {Colloquium Mathematicae}, volume = {100}, year = {2004}, pages = {149-162}, zbl = {1054.35028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-1} }
Piotr Gwiazda; Agnieszka Świerczewska. An L¹-stability and uniqueness result for balance laws with multifunctions: a model from the theory of granular media. Colloquium Mathematicae, Tome 100 (2004) pp. 149-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-2-1/