The Borel structure of some non-Lebesgue sets
Don L. Hancock
Colloquium Mathematicae, Tome 100 (2004), p. 95-101 / Harvested from The Polish Digital Mathematics Library

For a given function in some classes related to real derivatives, we examine the structure of the set of points which are not Lebesgue points. In particular, we prove that for a summable approximately continuous function, the non-Lebesgue set is a nowhere dense nullset of at most Borel class 4.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283907
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-9,
     author = {Don L. Hancock},
     title = {The Borel structure of some non-Lebesgue sets},
     journal = {Colloquium Mathematicae},
     volume = {100},
     year = {2004},
     pages = {95-101},
     zbl = {1069.26004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-9}
}
Don L. Hancock. The Borel structure of some non-Lebesgue sets. Colloquium Mathematicae, Tome 100 (2004) pp. 95-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-9/