For a given function in some classes related to real derivatives, we examine the structure of the set of points which are not Lebesgue points. In particular, we prove that for a summable approximately continuous function, the non-Lebesgue set is a nowhere dense nullset of at most Borel class 4.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-9,
author = {Don L. Hancock},
title = {The Borel structure of some non-Lebesgue sets},
journal = {Colloquium Mathematicae},
volume = {100},
year = {2004},
pages = {95-101},
zbl = {1069.26004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-9}
}
Don L. Hancock. The Borel structure of some non-Lebesgue sets. Colloquium Mathematicae, Tome 100 (2004) pp. 95-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-9/