On the number of nonquadratic residues which are not primitive roots
Florian Luca ; P. G. Walsh
Colloquium Mathematicae, Tome 100 (2004), p. 91-93 / Harvested from The Polish Digital Mathematics Library

We show that there exist infinitely many positive integers r not of the form (p-1)/2 - ϕ(p-1), thus providing an affirmative answer to a question of Neville Robbins.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283653
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-8,
     author = {Florian Luca and P. G. Walsh},
     title = {On the number of nonquadratic residues which are not primitive roots},
     journal = {Colloquium Mathematicae},
     volume = {100},
     year = {2004},
     pages = {91-93},
     zbl = {1060.11002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-8}
}
Florian Luca; P. G. Walsh. On the number of nonquadratic residues which are not primitive roots. Colloquium Mathematicae, Tome 100 (2004) pp. 91-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-8/