We show that there exist infinitely many positive integers r not of the form (p-1)/2 - ϕ(p-1), thus providing an affirmative answer to a question of Neville Robbins.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-8, author = {Florian Luca and P. G. Walsh}, title = {On the number of nonquadratic residues which are not primitive roots}, journal = {Colloquium Mathematicae}, volume = {100}, year = {2004}, pages = {91-93}, zbl = {1060.11002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-8} }
Florian Luca; P. G. Walsh. On the number of nonquadratic residues which are not primitive roots. Colloquium Mathematicae, Tome 100 (2004) pp. 91-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-8/