We give new and simple sufficient conditions for Gaussian upper bounds for a convolution semigroup on a unimodular locally compact group. These conditions involve certain semigroup estimates in L²(G). We describe an application for estimates of heat kernels of complex subelliptic operators on unimodular Lie groups.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-7,
author = {Nick Dungey},
title = {On Gaussian kernel estimates on groups},
journal = {Colloquium Mathematicae},
volume = {100},
year = {2004},
pages = {77-90},
zbl = {1052.22007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-7}
}
Nick Dungey. On Gaussian kernel estimates on groups. Colloquium Mathematicae, Tome 100 (2004) pp. 77-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-7/