We prove that for every compact, connected group G there is a singular measure μ such that the Fourier series of μ*μ converges uniformly on G. Our results extend the earlier results of Saeki and Dooley-Gupta.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-2, author = {Sanjiv K. Gupta and Kathryn E. Hare}, title = {On convolution squares of singular measures}, journal = {Colloquium Mathematicae}, volume = {100}, year = {2004}, pages = {9-16}, zbl = {1052.43001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-2} }
Sanjiv K. Gupta; Kathryn E. Hare. On convolution squares of singular measures. Colloquium Mathematicae, Tome 100 (2004) pp. 9-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm100-1-2/