The Lévy-Khintchine formula and Nica-Speicher property for deformations of the free convolution
Łukasz Jan Wojakowski
Banach Center Publications, Tome 75 (2007), p. 309-314 / Harvested from The Polish Digital Mathematics Library

We study deformations of the free convolution arising via invertible transformations of probability measures on the real line T:μ ↦ Tμ. We define new associative convolutions of measures by μTν=T-1(TμTν). We discuss infinite divisibility with respect to these convolutions, and we establish a Lévy-Khintchine formula. We conclude the paper by proving that for any such deformation of free probability all probability measures μ have the Nica-Speicher property, that is, one can find their convolution power μTs for all s ≥ 1. This behaviour is similar to the free case, as in the original paper of Nica and Speicher [NS].

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:282110
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc78-0-23,
     author = {\L ukasz Jan Wojakowski},
     title = {The L\'evy-Khintchine formula and Nica-Speicher property for deformations of the free convolution},
     journal = {Banach Center Publications},
     volume = {75},
     year = {2007},
     pages = {309-314},
     zbl = {1140.46327},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc78-0-23}
}
Łukasz Jan Wojakowski. The Lévy-Khintchine formula and Nica-Speicher property for deformations of the free convolution. Banach Center Publications, Tome 75 (2007) pp. 309-314. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc78-0-23/