Degree of T-equivariant maps in ℝⁿ
Joanna Janczewska ; Marcin Styborski
Banach Center Publications, Tome 75 (2007), p. 147-159 / Harvested from The Polish Digital Mathematics Library

A special case of G-equivariant degree is defined, where G = ℤ₂, and the action is determined by an involution T:pqpq given by T(u,v) = (u,-v). The presented construction is self-contained. It is also shown that two T-equivariant gradient maps f,g:(,Sn-1)(,0) are T-homotopic iff they are gradient T-homotopic. This is an equivariant generalization of the result due to Parusiński.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:281595
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc77-0-11,
     author = {Joanna Janczewska and Marcin Styborski},
     title = {Degree of T-equivariant maps in Rn},
     journal = {Banach Center Publications},
     volume = {75},
     year = {2007},
     pages = {147-159},
     zbl = {1121.47043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc77-0-11}
}
Joanna Janczewska; Marcin Styborski. Degree of T-equivariant maps in ℝⁿ. Banach Center Publications, Tome 75 (2007) pp. 147-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc77-0-11/