A special case of G-equivariant degree is defined, where G = ℤ₂, and the action is determined by an involution given by T(u,v) = (u,-v). The presented construction is self-contained. It is also shown that two T-equivariant gradient maps are T-homotopic iff they are gradient T-homotopic. This is an equivariant generalization of the result due to Parusiński.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc77-0-11, author = {Joanna Janczewska and Marcin Styborski}, title = {Degree of T-equivariant maps in Rn}, journal = {Banach Center Publications}, volume = {75}, year = {2007}, pages = {147-159}, zbl = {1121.47043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc77-0-11} }
Joanna Janczewska; Marcin Styborski. Degree of T-equivariant maps in ℝⁿ. Banach Center Publications, Tome 75 (2007) pp. 147-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc77-0-11/