The Kähler quotient of a complex reductive Lie group relative to the conjugation action carries a complex algebraic stratified Kähler structure which reflects the geometry of the group. For the group SL(n,ℂ), we interpret the resulting singular Poisson-Kähler geometry of the quotient in terms of complex discriminant varieties and variants thereof.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc76-0-16, author = {Johannes Huebschmann}, title = {Singular Poisson-K\"ahler geometry of certain adjoint quotients}, journal = {Banach Center Publications}, volume = {75}, year = {2007}, pages = {325-347}, zbl = {1209.53064}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc76-0-16} }
Johannes Huebschmann. Singular Poisson-Kähler geometry of certain adjoint quotients. Banach Center Publications, Tome 75 (2007) pp. 325-347. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc76-0-16/