Filippov Lemma for matrix fourth order differential inclusions
Grzegorz Bartuzel ; Andrzej Fryszkowski
Banach Center Publications, Tome 102 (2014), p. 9-18 / Harvested from The Polish Digital Mathematics Library

In the paper we give an analogue of the Filippov Lemma for the fourth order differential inclusions y = y”” - (A² + B²)y” + A²B²y ∈ F(t,y), (*) with the initial conditions y(0) = y’(0) = y”(0) = y”’(0) = 0, (**) where the matrices A,Bd×d are commutative and the multifunction F:[0,1]×dcl(d) is Lipschitz continuous in y with a t-independent constant l < ||A||²||B||². Main theorem. Assume that F:[0,1]×dcl(d)ismeasurableintandintegrablybounded.Lety₀ ∈ W4,1beanarbitraryfunctionsatisfying(**)andsuchthat dH(y(t),F(t,y(t)))p(t) a.e. in [0,1], where p₀ ∈ L¹[0,1]. Then there exists a solution y ∈ W4,1 of (*) with (**) such that |y(t)-y₀(t)| ≤ p₀(t) + l(Y₄(⋅,α,β)∗p₀)(t) |y(t)-y₀(t)| ≤ (Y₄(⋅,α,β)∗p₀)(t) a.e. in [0,1], where Y(x,α,β)=(α-1sinh(αx)-β-1sinh(βx))/(α²-β²) and α,β depend on ||A||, ||B|| and l.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:282548
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-1,
     author = {Grzegorz Bartuzel and Andrzej Fryszkowski},
     title = {Filippov Lemma for matrix fourth order differential inclusions},
     journal = {Banach Center Publications},
     volume = {102},
     year = {2014},
     pages = {9-18},
     zbl = {1300.34041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-1}
}
Grzegorz Bartuzel; Andrzej Fryszkowski. Filippov Lemma for matrix fourth order differential inclusions. Banach Center Publications, Tome 102 (2014) pp. 9-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-1/