In the paper we give an analogue of the Filippov Lemma for the fourth order differential inclusions y = y”” - (A² + B²)y” + A²B²y ∈ F(t,y), (*) with the initial conditions y(0) = y’(0) = y”(0) = y”’(0) = 0, (**) where the matrices are commutative and the multifunction is Lipschitz continuous in y with a t-independent constant l < ||A||²||B||². Main theorem. Assume that y₀ ∈ W4,1 a.e. in [0,1], where p₀ ∈ L¹[0,1]. Then there exists a solution y ∈ W4,1 of (*) with (**) such that |y(t)-y₀(t)| ≤ p₀(t) + l(Y₄(⋅,α,β)∗p₀)(t) |y(t)-y₀(t)| ≤ (Y₄(⋅,α,β)∗p₀)(t) a.e. in [0,1], where and α,β depend on ||A||, ||B|| and l.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-1, author = {Grzegorz Bartuzel and Andrzej Fryszkowski}, title = {Filippov Lemma for matrix fourth order differential inclusions}, journal = {Banach Center Publications}, volume = {102}, year = {2014}, pages = {9-18}, zbl = {1300.34041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-1} }
Grzegorz Bartuzel; Andrzej Fryszkowski. Filippov Lemma for matrix fourth order differential inclusions. Banach Center Publications, Tome 102 (2014) pp. 9-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-1/