Let p(z) be a polynomial of the form , . We discuss a sufficient condition for the existence of zeros of p(z) in an annulus z ∈ ℂ: 1 - c < |z| < 1 + c, where c > 0 is an absolute constant. This condition is a combination of Carleman’s formula and Jensen’s formula, which is a new approach in the study of zeros of polynomials.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-1-3,
author = {Xiangdong Yang and Caifeng Yi and Jin Tu},
title = {A note on the number of zeros of polynomials in an annulus},
journal = {Annales Polonici Mathematici},
volume = {101},
year = {2011},
pages = {25-31},
zbl = {1246.30005},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-1-3}
}
Xiangdong Yang; Caifeng Yi; Jin Tu. A note on the number of zeros of polynomials in an annulus. Annales Polonici Mathematici, Tome 101 (2011) pp. 25-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-1-3/