We examine the Poisson equation with boundary conditions on a cylinder in a weighted space of , p≥ 3, type. The weight is a positive power of the distance from a distinguished plane. To prove the existence of solutions we use our result on existence in a weighted L₂ space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-am37-1-1, author = {Joanna Renc\l awowicz and Wojciech M. Zaj\k aczkowski}, title = {Existence of solutions to the Poisson equation in $L\_p$-weighted spaces}, journal = {Applicationes Mathematicae}, volume = {37}, year = {2010}, pages = {1-12}, zbl = {1188.35053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-1-1} }
Joanna Rencławowicz; Wojciech M. Zajączkowski. Existence of solutions to the Poisson equation in $L_p$-weighted spaces. Applicationes Mathematicae, Tome 37 (2010) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-am37-1-1/