The aim of this work is to estimate exponential sums of the form , where Λ denotes von Mangoldt’s function, f a digital function, and β ∈ ℝ a parameter. This result can be interpreted as a Prime Number Theorem for rotations (i.e. a Vinogradov type theorem) twisted by digital functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-1-2, author = {Bruno Martin and Christian Mauduit and Jo\"el Rivat}, title = {Th\'eor\`eme des nombres premiers pour les fonctions digitales}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {11-45}, zbl = {06471888}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-1-2} }
Bruno Martin; Christian Mauduit; Joël Rivat. Théorème des nombres premiers pour les fonctions digitales. Acta Arithmetica, Tome 166 (2014) pp. 11-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-1-2/