Existence and relaxation results for nonlinear second order evolution inclusions
Stanisław Migórski
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 15 (1995), p. 129-148 / Harvested from The Polish Digital Mathematics Library

In this paper we study nonlinear evolution inclusions associated with second order equations defined on an evolution triple. We prove two existence theorems for the cases where the orientor field is convex valued and nonconvex valued, respectively. We show that when the orientor field is Lipschitzean, then the set of solutions of the nonconvex problem is dense in the set of solutions of the convexified problem.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:275936
@article{bwmeta1.element.bwnjournal-article-div15i2n2bwm,
     author = {Stanis\l aw Mig\'orski},
     title = {Existence and relaxation results for nonlinear second order evolution inclusions},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {15},
     year = {1995},
     pages = {129-148},
     zbl = {0847.34068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div15i2n2bwm}
}
Stanisław Migórski. Existence and relaxation results for nonlinear second order evolution inclusions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 15 (1995) pp. 129-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div15i2n2bwm/

[000] [1] N.U. Ahmed, Existence of optimal controls for a class of systems governed by differential inclusions in Banach spaces, J. Optimization Theory and Appl. 50 (2) (1986), 213-237. | Zbl 0577.49025

[001] [2] N.U. Ahmed, Optimal relaxed controls for nonlinear infinite dimensional stochastic differential inclusions, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., N. H. Pavel, Editor, New York, Basel, Hong Kong 160 (1994), 1-19.

[002] [3] N.U. Ahmed and S. Kerbal, Optimal control of nonlinear second order evolution equations, J. Applied Math. and Stochastic Anal. 6 (1993), 123-136.

[003] [4] N.U. Ahmed and K.L.Teo, Optimal Control of Distributed Parameter Systems, North Holland, New York 1981. | Zbl 0472.49001

[004] [5] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, Tokyo 1984. | Zbl 0538.34007

[005] [6] V.Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands 1976. | Zbl 0328.47035

[006] [7] H. Brezis, Opérateurs maximaux monotones et semi-groups de contractions dans les espaces de Hilbert, North-Holland, Amsterdam 1973. | Zbl 0252.47055

[007] [8] H.O. Fattorini, Existence theory and the maximum principle for relaxed infinite-dimensional optimal control problems, SIAM J. Control and Optimization 32 (2) (1994), 311-331. | Zbl 0796.93112

[008] [9] A.F. Filipov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621.

[009] [10] A. Fryszkowski, Continuous selections for nonconvex multivalued maps, Studia Math. 76 (1983), 163-174. | Zbl 0534.28003

[010] [11] S. Hu, V. Lakshmikantham and N.S. Papageorgiou, On the solution set of nonlinear evolution inclusions, Dynamics Systems and Appl. 1 (1992), 71-82. | Zbl 0755.34057

[011] [12] K. Kuratowski, Topology, Academic Press N.Y. and PWN-Polish Scientific Publishers, Vol. I, Warszawa 1966.

[012] [13] J.L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris 1969. | Zbl 0189.40603

[013] [14] J.L. Lions and E. Magenes, Problémes aux limites non homogénes et applications, Dunod, Paris 1 (1968). | Zbl 0165.10801

[014] [15] S. Migórski, A counterexample to a compact embedding theorem for functions with values in a Hilbert space, Proc. Amer. Math. Soc. 123 (8) (1995), 2447-2449. | Zbl 0851.46026

[015] [16] S. Migórski, Existence and relaxation results for nonlinear evolution inclusions revisited, J. Applied Math. and Stochastic Anal. 8 (2) (1995), 143-149. | Zbl 0870.34061

[016] [17] E.V. Nagy, A theorem on compact embedding for functions with values in an infinite dimensional Hilbert space, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 22-23 (1979-80), 243-245.

[017] [18] N.S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions, Intern. J. Math. and Math. Sci. 10 (1987), 433-442. | Zbl 0619.28009

[018] [19] N.S. Papageorgiou, A relaxation theorem for differential inclusions in Banach spaces, Tohoku Math. Journ. 39 (1987), 505-517. | Zbl 0647.34011

[019] [20] N.S. Papageorgiou, Measurable multifunctions and their applications to convex integral functionals, Internat. J. Math. and Math. Sci. 12 (1989), 175-192. | Zbl 0659.28008

[020] [21] N.S. Papageorgiou, Continuous dependence results for a class of evolution inclusions, Proc. of the Edinburgh Math. Soc. 35 (1992), 139-158. | Zbl 0758.34050

[021] [22] A. Pliś, Trajectories and quasitrajectories of an orientor field, Bull. Polish Acad. Sci. Math. 10 (1962), 529-531.

[022] [23] J. Simon, Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl. (IV), Vol. CXLVI (1987), 65-96. | Zbl 0629.46031

[023] [24] A.A. Tolstonogov, Solutions of evolution inclusions, I, Sibirskii Matematicheskii Zhurnal 33 (1992), 161-174. | Zbl 0787.34052

[024] [25] D. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859-903. | Zbl 0407.28006

[025] [26] T. Ważewski, Sur une généralisation de la notion des solutions d'une équation au contingent, Bull. Polish Acad. Sci. Math. 10 (1962), 11-15. | Zbl 0104.30404

[026] [27] J. Wloka, Partial differential equations, Cambridge University Press 1992.